找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 7th International Co Dmitry Ustalov,Andrey Filchenkov,Jan ?i?ka Conference proceedings 2018 S

[復(fù)制鏈接]
樓主: vitamin-D
11#
發(fā)表于 2025-3-23 12:26:34 | 只看該作者
A Comparative Study of Publicly Available Russian Sentiment Lexiconsdependence of their F1-measure on their TF-IDF model size. The resulting union lexicon most fully reflects the sentiment lexica of the present day Russian language and can be used both in scientific research and in applied sentiment analysis systems.
12#
發(fā)表于 2025-3-23 17:07:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:39 | 只看該作者
1865-0929 St. Petersburg, Russia, in October 2018. The 19 revised full papers were carefully reviewed and selected from 56 submissions and cover a wide range of topics, including morphology and word-level semantics, sentence and discourse representations, corpus linguistics, language resources, and social int
14#
發(fā)表于 2025-3-23 22:33:35 | 只看該作者
https://doi.org/10.1007/978-3-031-48129-1om LSTM. The aim is to build a model which is simple to implement, light in terms of parameters and works across multiple supervised sentence comparison tasks. We show good results for the model on two sentence comparison datasets.
15#
發(fā)表于 2025-3-24 03:25:17 | 只看該作者
Encyclopedia of Heroism Studiesa confirmation measure and an aggregation function. We designed a regularizer for topic modeling representing this score. The resulting topic modeling method shows significant superiority to all analogs in reflecting human assessments of topic interpretability.
16#
發(fā)表于 2025-3-24 07:28:19 | 只看該作者
Supervised Mover’s Distance: A Simple Model for Sentence Comparisonom LSTM. The aim is to build a model which is simple to implement, light in terms of parameters and works across multiple supervised sentence comparison tasks. We show good results for the model on two sentence comparison datasets.
17#
發(fā)表于 2025-3-24 12:24:14 | 只看該作者
Four Keys to Topic Interpretability in Topic Modelinga confirmation measure and an aggregation function. We designed a regularizer for topic modeling representing this score. The resulting topic modeling method shows significant superiority to all analogs in reflecting human assessments of topic interpretability.
18#
發(fā)表于 2025-3-24 15:23:53 | 只看該作者
Conference proceedings 2018burg, Russia, in October 2018. The 19 revised full papers were carefully reviewed and selected from 56 submissions and cover a wide range of topics, including morphology and word-level semantics, sentence and discourse representations, corpus linguistics, language resources, and social interaction a
19#
發(fā)表于 2025-3-24 19:37:43 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
名山县| 淄博市| 潞西市| 古交市| 会同县| 安徽省| 辉县市| 阿瓦提县| 云南省| 南昌县| 江华| 安多县| 邵武市| 兰考县| 周至县| 辽阳市| 和田县| 壤塘县| 中宁县| 上栗县| 竹山县| 聂荣县| 安多县| 万山特区| 留坝县| 当雄县| 红河县| 开鲁县| 咸丰县| 邻水| 称多县| 肇源县| 辉县市| 宁波市| 益阳市| 息烽县| 攀枝花市| 嘉峪关市| 扶余县| 常山县| 临清市|