找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan ?i?ka Conference proceedings 2018

[復制鏈接]
樓主: 巡洋
41#
發(fā)表于 2025-3-28 18:05:06 | 只看該作者
https://doi.org/10.1007/978-90-368-3041-6vantage of both methods. This paper proposes to obtain low-level feature representation feeding frame-level descriptor sequences to a Long Short-Term Memory (LSTM) network, combine the outcome with the Principal Component Analysis (PCA) representation of utterance-level features, and make the final prediction with a logistic regression classifier.
42#
發(fā)表于 2025-3-28 22:08:48 | 只看該作者
43#
發(fā)表于 2025-3-29 01:13:48 | 只看該作者
44#
發(fā)表于 2025-3-29 07:00:19 | 只看該作者
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemslization to increase the training speed. A fully-connected neural network reaches an average recall of 0.78, a Long Short-Term Memory neural network shows an average recall of 0.65. Advantages and disadvantages of both architectures are provided for the particular task.
45#
發(fā)表于 2025-3-29 09:20:25 | 只看該作者
Combined Feature Representation for Emotion Classification from Russian Speechvantage of both methods. This paper proposes to obtain low-level feature representation feeding frame-level descriptor sequences to a Long Short-Term Memory (LSTM) network, combine the outcome with the Principal Component Analysis (PCA) representation of utterance-level features, and make the final prediction with a logistic regression classifier.
46#
發(fā)表于 2025-3-29 11:35:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:10:18 | 只看該作者
Morpheme Level Word Embeddingriments. Firstly, we describe how to build morpheme extractor from prepared vocabularies. Our extractor reached 91% accuracy on the vocabularies of known morpheme segmentation. Secondly we show the way how it can be applied for NLP tasks, and then we discuss our results, pros and cons, and our future work.
48#
發(fā)表于 2025-3-29 21:20:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:02 | 只看該作者
50#
發(fā)表于 2025-3-30 06:36:33 | 只看該作者
Tanmay,Lakshmi,Vijay Kumar Soni,Adarsh KumarFacebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the so-called Dark Triad: narcissism, psychopathy, and Machiavellianism) and to find the themes that are most important to such individuals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
金川县| 铁岭市| 信宜市| 广南县| 运城市| 茌平县| 阳原县| 普陀区| 曲松县| 合阳县| 开阳县| 正镶白旗| 石林| 晋州市| 云阳县| 灵寿县| 土默特右旗| 佛坪县| 青岛市| 元阳县| 荥阳市| 翁牛特旗| 弥勒县| 区。| 台州市| 蒲江县| 台东市| 五寨县| 望江县| 晋宁县| 乌兰浩特市| 屏山县| 读书| 巴彦县| 余江县| 于田县| 连城县| 秭归县| 罗江县| 双峰县| 天全县|