找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Industrial Applications; Artificial Intellige Tawfik Masrour,Ibtissam El Hassani,Anass Cherrafi Conference proc

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:57:22 | 只看該作者
SQL Generation from Natural Language Using Supervised Learning and Recurrent Neural Networks, embedding and Recurrent Neural Networks (RNN), precisely on Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) cells. We present also the DataSet used for training and testing our models, based on WikiSQL, and finally we show where we arrived in terms of accuracy.
52#
發(fā)表于 2025-3-30 12:52:29 | 只看該作者
Epigenetics in Crop Improvementuency-Inverse Document Frequency (TF-IDF). In this research paper, we provide a comparison of the three classifiers. The Experimental results have demonstrated that K-NN achieved a high performance based on four measuring factors namely: Precision, Recall, F1-score and Accuracy in both datasets Enron and LingSpam.
53#
發(fā)表于 2025-3-30 18:21:22 | 只看該作者
54#
發(fā)表于 2025-3-30 22:33:44 | 只看該作者
55#
發(fā)表于 2025-3-31 02:03:47 | 只看該作者
https://doi.org/10.1007/978-981-97-4742-9ssing unit, data aggregation-analysis unit, and monitoring-visualization unit. Each level optimizing the solution of a particular task to achieve smart telemonitoring of the knee telerehabilitation process.
56#
發(fā)表于 2025-3-31 05:12:31 | 只看該作者
Spam Filtering System Based on Nearest Neighbor Algorithms,uency-Inverse Document Frequency (TF-IDF). In this research paper, we provide a comparison of the three classifiers. The Experimental results have demonstrated that K-NN achieved a high performance based on four measuring factors namely: Precision, Recall, F1-score and Accuracy in both datasets Enron and LingSpam.
57#
發(fā)表于 2025-3-31 12:08:13 | 只看該作者
58#
發(fā)表于 2025-3-31 17:15:27 | 只看該作者
EduBot: An Unsupervised Domain-Specific Chatbot for Educational Institutions,eprocessing the training data. User’s inputs were similarly processed and then tf-idf based cosine similarity applied to retrieve the best answer. Later, a user-centric evaluation metric was used to evaluate the model and as per the metric, our current model showed approximately 80% accuracy.
59#
發(fā)表于 2025-3-31 19:33:26 | 只看該作者
Conceptual Architecture of AI-Enabled IoT System for Knee Rehabilitation Exercises Telemonitoring,ssing unit, data aggregation-analysis unit, and monitoring-visualization unit. Each level optimizing the solution of a particular task to achieve smart telemonitoring of the knee telerehabilitation process.
60#
發(fā)表于 2025-3-31 23:35:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上栗县| 白银市| 阿克陶县| 茶陵县| 漾濞| 淅川县| 潍坊市| 崇义县| 新津县| 武乡县| 汝城县| 长海县| 德保县| 北票市| 克什克腾旗| 东兴市| 泉州市| 曲麻莱县| 新晃| 婺源县| 家居| 千阳县| 大余县| 大邑县| 湟中县| 莱西市| 松阳县| 黔西县| 黔东| 龙泉市| 芒康县| 盈江县| 华坪县| 五寨县| 成武县| 文山县| 青铜峡市| 苍山县| 济阳县| 延寿县| 汝南县|