找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence XXXIV; 37th SGAI Internatio Max Bramer,Miltos Petridis Conference proceedings 2017 Springer International Publishin

[復(fù)制鏈接]
查看: 31802|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:01:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence XXXIV
期刊簡稱37th SGAI Internatio
影響因子2023Max Bramer,Miltos Petridis
視頻videohttp://file.papertrans.cn/163/162159/162159.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence XXXIV; 37th SGAI Internatio Max Bramer,Miltos Petridis Conference proceedings 2017 Springer International Publishin
影響因子This book constitutes the proceedings of the 37th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, AI 2017, held in Cambridge, UK, in December 2017. .The 25 full papers and 12 short papers presented in this volume were carefully reviewed and selected from 55 submissions. There are technical and application papers which were organized in topical sections named: machine learning and neural networks; machine learning, speech and vision and fuzzy logic; short technical papers; AI for healthcare; applications of machine learning; applications of neural networks and fuzzy logic; case-based reasoning; AI techniques; and short applications papers.?.
Pindex Conference proceedings 2017
The information of publication is updating

書目名稱Artificial Intelligence XXXIV影響因子(影響力)




書目名稱Artificial Intelligence XXXIV影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence XXXIV網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence XXXIV網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence XXXIV被引頻次




書目名稱Artificial Intelligence XXXIV被引頻次學(xué)科排名




書目名稱Artificial Intelligence XXXIV年度引用




書目名稱Artificial Intelligence XXXIV年度引用學(xué)科排名




書目名稱Artificial Intelligence XXXIV讀者反饋




書目名稱Artificial Intelligence XXXIV讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:40:08 | 只看該作者
Masked Conditional Neural Networks for Environmental Sound Classification the Masked ConditionaL Neural Network (MCLNN) induces the network to learn in frequency bands by embedding a filterbank-like sparseness over the network’s links using a binary mask. Additionally, the masking automates the exploration of different feature combinations concurrently analogous to handc
板凳
發(fā)表于 2025-3-22 04:24:10 | 只看該作者
Ensembles of Recurrent Neural Networks for Robust Time Series Forecasting fits often involves complex and time consuming tasks such as extensive data preprocessing, designing hybrid models, or heavy parameter optimization. Long Short-Term Memory (LSTM), a variant of recurrent neural networks (RNNs), provide state of the art forecasting performance without prior assumptio
地板
發(fā)表于 2025-3-22 05:27:07 | 只看該作者
A Blackboard Based Hybrid Multi-Agent System for Improving Classification Accuracy Using Reinforcemed for tackling complex data classification problems. A trust metric for evaluating agent’s performance and expertise based on Q-learning and employing different voting processes is formulated. Specifically, multiple heterogeneous machine learning agents, are devised to form the expertise group for t
5#
發(fā)表于 2025-3-22 10:19:13 | 只看該作者
Programming Without Program or How to Program in Natural Language Utterancesty of numerous speech-to-text services, gives access to practical voice recognition. Enguage?is an open, programmable speech understanding engine, prototyped in Java, which is built into an app on Google Play, acting entirely as its user interface. Thus, devices can be instructed, and present result
6#
發(fā)表于 2025-3-22 16:11:02 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:13 | 只看該作者
8#
發(fā)表于 2025-3-22 23:02:06 | 只看該作者
Towards a Deep Reinforcement Learning Approach for Tower Line Warsly playing and winning relatively advanced computer games. There is undoubtedly an anticipation that Deep Reinforcement Learning will play a major role when the first AI masters the complicated game plays needed to beat a professional Real-Time Strategy game player. For this to be possible, there ne
9#
發(fā)表于 2025-3-23 01:45:11 | 只看該作者
Improving Modular Classification Rule Induction with G-Prism Using Dynamic Rule Term Boundaries based classifiers. Prism classifiers achieve a similar classification accuracy compared with decision trees, but tend to overfit less, especially if there is noise in the data. This paper describes the development of a new member of the Prism family, the G-Prism classifier, which improves the class
10#
發(fā)表于 2025-3-23 07:57:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 兴安县| 闻喜县| 高密市| 安西县| 稷山县| 榆林市| 宜宾市| 新民市| 开封县| 通许县| 宜良县| 缙云县| 涟水县| 沙湾县| 孝昌县| 万州区| 宜黄县| 塔河县| 仪陇县| 贵南县| 诸暨市| 永川市| 高雄县| 潜山县| 尼木县| 博乐市| 霞浦县| 东丽区| 红原县| 交口县| 昌宁县| 科尔| 梅河口市| 稻城县| 麻江县| 北辰区| 福海县| 潼关县| 怀化市| 铅山县|