找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence Applications in Information and Communication Technologies; Yacine Laalaoui,Nizar Bouguila Book 2015 Springer Inte

[復(fù)制鏈接]
樓主: 分期
11#
發(fā)表于 2025-3-23 12:08:10 | 只看該作者
1860-949X ld.Includes supplementary material: .This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this bo
12#
發(fā)表于 2025-3-23 17:30:49 | 只看該作者
Benjamin D. Wright,A. Jackson Stennercomparison purposes. Experiments were conducted on CACM, RCV1 and random benchmarks. Numerical results show that ACO is scalable while achieving the same performance as the traditional IR process in terms of solutions quality.
13#
發(fā)表于 2025-3-23 21:04:28 | 只看該作者
14#
發(fā)表于 2025-3-23 23:44:06 | 只看該作者
15#
發(fā)表于 2025-3-24 06:24:47 | 只看該作者
Agustín Vicente,Fernando Martínez-Manriqueneously with model selection and parameters estimation in one single algorithm. The merits of RJMCMC for GID mixture learning is investigated using synthetic data and a real interesting application namely object detection.
16#
發(fā)表于 2025-3-24 07:18:13 | 只看該作者
Hybrid ACO and Tabu Search for Large Scale Information Retrievalcomparison purposes. Experiments were conducted on CACM, RCV1 and random benchmarks. Numerical results show that ACO is scalable while achieving the same performance as the traditional IR process in terms of solutions quality.
17#
發(fā)表于 2025-3-24 10:48:43 | 只看該作者
On the Application of Artificial Intelligence Techniques to Create Network Intelligence together with the main experimental results. This chapter will demonstrate various benefits achieved from adding an intelligent layer to ICT solutions, in various domains. Finally, we will also address future developments.
18#
發(fā)表于 2025-3-24 16:12:31 | 只看該作者
A Statistical Framework for Mental Targets Search Using Mixture Modelsantify the similarities between images. We run experiments including real users and we present a case study of a search process that gives promising results in terms of number of iterations needed to find the mental target classes within a given dataset.
19#
發(fā)表于 2025-3-24 19:19:38 | 只看該作者
20#
發(fā)表于 2025-3-25 02:59:23 | 只看該作者
Variational Learning of Finite Inverted Dirichlet Mixture Models and ApplicationsDirichlet mixture which provides a natural way of clustering positive data. An EM-style algorithm is developed based upen variational inference for learning the parameters of the mixture model. The proposed statistical framework is applied to the challenging tasks of natural scene categorization and human activity classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阆中市| 乾安县| 射洪县| 大足县| 萍乡市| 北流市| 定安县| 叙永县| 江阴市| 库伦旗| 班玛县| 宝兴县| 滁州市| 宁津县| 黄冈市| 凤城市| 两当县| 新丰县| 吉水县| 林州市| 苏尼特左旗| 古田县| 专栏| 太康县| 扶余县| 柳江县| 栾川县| 娄烦县| 烟台市| 改则县| 马鞍山市| 出国| 湖口县| 兴义市| 调兵山市| 渝北区| 太谷县| 临沭县| 浏阳市| 镇康县| 盐山县|