找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence; Third CAAI Internati Lu Fang,Jian Pei,Ruiping Wang Conference proceedings 2024 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: Garfield
41#
發(fā)表于 2025-3-28 16:44:07 | 只看該作者
42#
發(fā)表于 2025-3-28 22:03:57 | 只看該作者
FairDR: Ensuring Fairness in?Mixed Data of?Fairly and?Unfairly Treated Instancescausal structures. Leveraging the perspective of SCM, we propose a framework called FairDR, which utilizes the Hirschfeld-Gebelein-Rényi (HGR) correlation to accurately recover the distribution of both fairly and unfairly treated data. FairDR can serve as a pre-processing method for other fair machi
43#
發(fā)表于 2025-3-29 01:04:55 | 只看該作者
Blind Adversarial Training: Towards Comprehensively Robust Models Against Blind Adversarial Attacks estimate a nonuniform budget to modify the AEs used in training, ensuring that the strengths of the AEs are dynamically located in a reasonable range and ultimately improving the comprehensive robustness of the AT model. We include a theoretical investigation on a toy classification problem to guar
44#
發(fā)表于 2025-3-29 04:26:57 | 只看該作者
45#
發(fā)表于 2025-3-29 10:50:41 | 只看該作者
AIGCIQA2023: A Large-Scale Image Quality Assessment Database for?AI Generated Images: From the?Perspassess the human visual preferences for each image from three perspectives including ., . and .. Finally, based on this large-scale database, we conduct a benchmark experiment to evaluate the performance of several state-of-the-art IQA metrics on our constructed database. The AIGCIQA2023 database an
46#
發(fā)表于 2025-3-29 13:27:15 | 只看該作者
47#
發(fā)表于 2025-3-29 19:12:46 | 只看該作者
Domain Specific Pre-training Methods for?Traditional Chinese Medicine Prescription Recommendationnd multi-grained negative sampling methods and training objectives. To verify the effectiveness of the proposed method, we conduct extensive experiments on the symptom-prescription dataset. The experiment results show that our proposed method can accurately recommend suitable prescriptions with more
48#
發(fā)表于 2025-3-29 20:48:40 | 只看該作者
LTUNet: A Lightweight Transformer-Based UNet with?Multi-scale Mechanism for?Skin Lesion Segmentationres are used to enhance the feature map of each scale. Finally, we fuse the upsampled results of all scales on UNet to improve the performance of segmentation. Our method achieves 0.9432, 0.8948, 0.9348 for mDice, mIoU and mACC on the ISIC2016 dataset, and 0.9058, 0.8138, 0.8968 on the ISIC2018 data
49#
發(fā)表于 2025-3-30 01:53:33 | 只看該作者
A Novel Online Multi-label Feature Selection Approach for?Multi-dimensional Streaming Data we recalculates the weights of all current labels and updates the total Fisher score to update the current feature rank list. In the experiments, we compare the performance of our approach with four representative online feature selection algorithms for streaming features and labels, respectively.
50#
發(fā)表于 2025-3-30 06:19:37 | 只看該作者
M,Sim: A Long-Term Interactive Driving Simulatorediction model M2I, forming a new simulator named M.Sim. Notably, M.Sim can effectively address the OOD problem of long-term simulation by enforcing a flexible regularization that admits the replayed data, while still enjoying the diversity of data-driven predictions. We demonstrate the superiority
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建阳市| 德清县| 河间市| 博湖县| 南召县| 榆林市| 海丰县| 绥江县| 乐昌市| 密山市| 绥宁县| 荆州市| 丰台区| 福泉市| 常德市| 陈巴尔虎旗| 永安市| 洪洞县| 南郑县| 天祝| 久治县| 康马县| 客服| 霍山县| 应城市| 九龙县| 海淀区| 大方县| 友谊县| 循化| 崇信县| 资源县| 抚远县| 蕲春县| 西林县| 延川县| 盘山县| 雷州市| 汶上县| 宝山区| 桂东县|