找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Immune Systems; 9th International Co Emma Hart,Chris McEwan,Andy Hone Conference proceedings 2010 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: Definite
31#
發(fā)表于 2025-3-26 22:38:13 | 只看該作者
32#
發(fā)表于 2025-3-27 05:05:52 | 只看該作者
On the Benefits of Aging and the Importance of Details make aging useful, and implementation details. While implementation details seem to be the least important part they can have a surprisingly huge impact. This is proven by means of theoretical analysis for a carefully constructed example problem as well as thorough experimental investigations of aging for this problem.
33#
發(fā)表于 2025-3-27 06:42:51 | 只看該作者
Classifying in the Presence of Uncertainty: A DCA Perspective paper presents a discussion about the role of uncertainty within classification tasks and goes on to identify the strengths and weaknesses of the dendritic cell algorithm from this perspective. By examining other techniques for protecting against uncertainty, future directions for the dendritic cell algorithm are identified and discussed.
34#
發(fā)表于 2025-3-27 10:26:21 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:52 | 只看該作者
,Erl?uterung des Forschungsvorhabens,from host cell to a cell that is able to kill intracellular .. This process of activation is regulated by cytokines (notably IFN.) produced by many different types of leukocytes, including natural killer (NK) cells ([1]), CD4. and CD8. T cells ([2]), and NKT cells ([3]).
36#
發(fā)表于 2025-3-27 21:32:01 | 只看該作者
Verfahren zur Mittelwertbildung,ence. Experiments on real data sets show that by alleviating the crisp separation between the two contexts, our new approach which focuses on binary classification problems produces more accurate results.
37#
發(fā)表于 2025-3-27 23:13:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:31:00 | 只看該作者
39#
發(fā)表于 2025-3-28 08:19:50 | 只看該作者
FDCM: A Fuzzy Dendritic Cell Methodence. Experiments on real data sets show that by alleviating the crisp separation between the two contexts, our new approach which focuses on binary classification problems produces more accurate results.
40#
發(fā)表于 2025-3-28 12:06:22 | 只看該作者
GAIS: A Gaussian Artificial Immune System for Continuous Optimizationion is carried out using a Gaussian mixture model. The algorithms were applied to eight benchmarks and the results compared with those produced by an immune-inspired algorithm and an estimation of distribution algorithm.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 12:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿克苏市| 嘉荫县| 鄯善县| 高邮市| 安溪县| 五原县| 龙州县| 光泽县| 阿尔山市| 磐安县| 卢龙县| 壤塘县| 英山县| 台东市| 阳谷县| 格尔木市| 遂宁市| 锡林郭勒盟| 永福县| 唐山市| 余干县| 宁明县| 绥江县| 唐山市| 翼城县| 东至县| 梁河县| 会理县| 海晏县| 崇礼县| 义乌市| 招远市| 仁布县| 朔州市| 吉水县| 横山县| 庄浪县| 彭水| 招远市| 莱州市| 都昌县|