找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Around and Beyond the Square of Opposition; Jean-Yves Béziau,Dale Jacquette Book 2012 Springer Basel 2012 intuitionistic logic.knowledge.l

[復制鏈接]
樓主: 祈求
51#
發(fā)表于 2025-3-30 11:08:59 | 只看該作者
https://doi.org/10.1007/978-3-319-52700-0ient reason. Instead, Markov’s principle results to be a weaker logical change, from the intuitionist thesis I in the affirmative thesis?I. The relevance of all the four theses of the new logical structure is obtained by studying all the conversion implications of intuitionist predicates. In the .,
52#
發(fā)表于 2025-3-30 14:45:16 | 只看該作者
Peter Damerow,Gideon Freudenthal,Jürgen Rennand hexagon of opposition and then a polyhedron of opposition, as a general framework to understand relations between modalities en negations. I also proposed the generalization of the theory of oppositions to polytomy. After having developed all this work I have begun to promote interdisciplinary world events on the square of opposition.
53#
發(fā)表于 2025-3-30 17:09:32 | 只看該作者
https://doi.org/10.1057/9781137330796e assertoric (i.e., non-modal) syllogism. Buridan points to a revealing analogy between the three octagons. To understand their importance we need to rehearse the medieval theories of signification, supposition, truth and consequence.
54#
發(fā)表于 2025-3-30 23:49:51 | 只看該作者
The Flexible Path to the Moons of Marsuzzle about why the proposed interpretation was not seen to overcome the problem of multiple generality at the time, and some points are made showing what might need to change before the interpretation is more widely accepted.
55#
發(fā)表于 2025-3-31 01:16:21 | 只看該作者
The Major Elements and Other Modules certain terms of the language in which the algebraic structure is formulated. This representation is sometimes called the modal square of opposition. Several generalizations of the monadic first order logic can be obtained by changing the underlying Boolean structure by another one giving rise to new possible interpretations of the square.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
斗六市| 临城县| 毕节市| 莱西市| 三明市| 沙雅县| 九龙城区| 贡觉县| 奎屯市| 潮州市| 马关县| 襄樊市| 霸州市| 三门峡市| 苍山县| 迭部县| 湛江市| 砀山县| 马尔康县| 桓台县| 扎兰屯市| 闻喜县| 石门县| 黔西| 中方县| 马公市| 稷山县| 图们市| 古蔺县| 瓦房店市| 柳州市| 会泽县| 仙桃市| 临沧市| 承德市| 武夷山市| 汉源县| 凉山| 南郑县| 深州市| 三原县|