找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Around and Beyond the Square of Opposition; Jean-Yves Béziau,Dale Jacquette Book 2012 Springer Basel 2012 intuitionistic logic.knowledge.l

[復制鏈接]
樓主: 祈求
51#
發(fā)表于 2025-3-30 11:08:59 | 只看該作者
https://doi.org/10.1007/978-3-319-52700-0ient reason. Instead, Markov’s principle results to be a weaker logical change, from the intuitionist thesis I in the affirmative thesis?I. The relevance of all the four theses of the new logical structure is obtained by studying all the conversion implications of intuitionist predicates. In the .,
52#
發(fā)表于 2025-3-30 14:45:16 | 只看該作者
Peter Damerow,Gideon Freudenthal,Jürgen Rennand hexagon of opposition and then a polyhedron of opposition, as a general framework to understand relations between modalities en negations. I also proposed the generalization of the theory of oppositions to polytomy. After having developed all this work I have begun to promote interdisciplinary world events on the square of opposition.
53#
發(fā)表于 2025-3-30 17:09:32 | 只看該作者
https://doi.org/10.1057/9781137330796e assertoric (i.e., non-modal) syllogism. Buridan points to a revealing analogy between the three octagons. To understand their importance we need to rehearse the medieval theories of signification, supposition, truth and consequence.
54#
發(fā)表于 2025-3-30 23:49:51 | 只看該作者
The Flexible Path to the Moons of Marsuzzle about why the proposed interpretation was not seen to overcome the problem of multiple generality at the time, and some points are made showing what might need to change before the interpretation is more widely accepted.
55#
發(fā)表于 2025-3-31 01:16:21 | 只看該作者
The Major Elements and Other Modules certain terms of the language in which the algebraic structure is formulated. This representation is sometimes called the modal square of opposition. Several generalizations of the monadic first order logic can be obtained by changing the underlying Boolean structure by another one giving rise to new possible interpretations of the square.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 00:46
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
合肥市| 资溪县| 淮南市| 衡阳县| 临沭县| 萨嘎县| 巫溪县| 凌云县| 错那县| 石屏县| 万盛区| 鹿泉市| 湖口县| 临沭县| 犍为县| 高唐县| 永和县| 西乡县| 清水县| 天峨县| 邯郸市| 锡林郭勒盟| 富源县| 潞西市| 惠州市| 即墨市| 当涂县| 闵行区| 珲春市| 滕州市| 乌恰县| 大理市| 天祝| 瓮安县| 逊克县| 阳曲县| 花莲市| 泰和县| 河津市| 北川| 云和县|