找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetics; Marc Hindry Textbook 2011 Springer-Verlag London Limited 2011 Gauss sums.analytic number theory.arithmetics.diophantine equat

[復(fù)制鏈接]
樓主: GLOAT
21#
發(fā)表于 2025-3-25 05:44:20 | 只看該作者
Elliptic Curves,points on the curve can thus be endowed with a natural additive group structure. The most concrete description of an elliptic curve comes from its affine equation, written as . The theory of elliptic curves is a marvelous mixture of elementary mathematics and profound, advanced mathematics, a mixtur
22#
發(fā)表于 2025-3-25 10:35:19 | 只看該作者
Developments and Open Problems,al and one-sided—of some important research areas in number theory. In particular, every section contains at least one open problem. This last chapter also includes many statements whose proofs surpass the level of this book but which also provide an opportunity to combine and expand on the mathemat
23#
發(fā)表于 2025-3-25 12:17:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:08:22 | 只看該作者
Universitexthttp://image.papertrans.cn/b/image/161630.jpg
25#
發(fā)表于 2025-3-25 22:08:48 | 只看該作者
26#
發(fā)表于 2025-3-26 04:00:57 | 只看該作者
Klemens Priesnitz,Christian Lohsewith respect to multiplication. Furthermore, for every power of a prime number, .=.., there exists a unique finite field, up to isomorphism, of cardinality ., denoted ... We will review the construction of these objects and state their main properties. In the following sections, we expand on some st
27#
發(fā)表于 2025-3-26 06:44:41 | 只看該作者
28#
發(fā)表于 2025-3-26 12:00:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:10:45 | 只看該作者
https://doi.org/10.1007/978-3-658-28707-8ducing the key tool: the classical theory of functions of a complex variable, of which we will give a brief overview. The two following sections contain proofs of Dirichlet’s “theorem on arithmetic progressions” and the “prime number theorem”. Dirichlet series and in particular the Riemann zeta func
30#
發(fā)表于 2025-3-26 17:24:07 | 只看該作者
Angelina Pausin,Andreas Beck,Peter B?hmpoints on the curve can thus be endowed with a natural additive group structure. The most concrete description of an elliptic curve comes from its affine equation, written as . The theory of elliptic curves is a marvelous mixture of elementary mathematics and profound, advanced mathematics, a mixtur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五莲县| 慈溪市| 旺苍县| 山东省| 杂多县| 彰化市| 酒泉市| 百色市| 萍乡市| 深水埗区| 林口县| 长岭县| 保康县| 家居| 吉安市| 张家川| 西华县| 黔西| 靖安县| 如皋市| 什邡市| 汪清县| 西昌市| 呼伦贝尔市| 邵武市| 甘南县| 敖汉旗| 张北县| 成都市| 读书| 吉水县| 云和县| 巧家县| 扬中市| 周口市| 色达县| 梨树县| 抚州市| 仙游县| 白玉县| 麻城市|