找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 5th International Wo ?etin Kaya Ko?,Sihem Mesnager,Erkay Sava? Conference proceedings 2015 Springer Internatio

[復(fù)制鏈接]
樓主: Clinical-Trial
11#
發(fā)表于 2025-3-23 10:49:33 | 只看該作者
12#
發(fā)表于 2025-3-23 14:25:43 | 只看該作者
Conference proceedings 2015 the advances in the theory, applications, and implementations of finite fields. The workshop will help to bridge the gap between the mathematical theory of finite fields and their hardware/software implementations and technical applications.
13#
發(fā)表于 2025-3-23 20:59:18 | 只看該作者
ASPES: A Skeletal Pascal Expert System,imultaneously in the verification procedures to get better complexity. We also present the explicit number of operations of the verification procedures of these REA-equivalence types. Moreover, we construct two new REA-equivalence types and present the verification procedures of these types with their complexities.
14#
發(fā)表于 2025-3-23 23:06:18 | 只看該作者
15#
發(fā)表于 2025-3-24 06:15:02 | 只看該作者
On Verification of Restricted Extended Affine Equivalence of Vectorial Boolean Functionsimultaneously in the verification procedures to get better complexity. We also present the explicit number of operations of the verification procedures of these REA-equivalence types. Moreover, we construct two new REA-equivalence types and present the verification procedures of these types with their complexities.
16#
發(fā)表于 2025-3-24 08:39:42 | 只看該作者
On o-Equivalence of Niho Bent Functionsrect. We also deduce two more transformations preserving o-equivalence but providing potentially EA-inequivalent bent functions. We exhibit examples of infinite classes of o-polynomials for which at least three EA-inequivalent Niho bent functions can be derived.
17#
發(fā)表于 2025-3-24 12:15:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:47:47 | 只看該作者
Conference proceedings 2015 in September 2014. The 9 revised full papers and 43 invited talks presented were carefully reviewed and selected from 27 submissions. This workshop is a forum of mathematicians, computer scientists, engineers and physicists performing research on finite field arithmetic, interested in communicating
19#
發(fā)表于 2025-3-24 21:30:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:11 | 只看該作者
https://doi.org/10.1007/978-1-4612-2270-5n of the implementations of those primitives in the same platform and also give links to the codes we have developed. Although we did not reach the speed given in the paper in some cases, we managed to beat the results of the reference implementations when they are available.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃宁县| 张家川| 衡南县| 丹棱县| 灵丘县| 肥东县| 鹤庆县| 腾冲县| 隆德县| 清水县| 阳江市| 铅山县| 潼南县| 山东省| 临夏县| 万年县| 彰化县| 竹溪县| 阜新市| 武鸣县| 瑞金市| 澄迈县| 南昌县| 格尔木市| 西城区| 黄大仙区| 屏南县| 晋宁县| 扶余县| 始兴县| 沙坪坝区| 启东市| 嵩明县| 宾川县| 蓬溪县| 大足县| 东莞市| 安化县| 札达县| 额济纳旗| 保靖县|