找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 6th International Wo Sylvain Duquesne,Svetla Petkova-Nikova Conference proceedings 2016 Springer International

[復制鏈接]
樓主: mobility
11#
發(fā)表于 2025-3-23 10:33:14 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:51 | 只看該作者
Differential Addition on Binary Elliptic Curvesc curves with cost of . when the given difference point is in affine form. Here, . denote the costs of a field multiplication, a field squaring and a field multiplication by a constant, respectively. This paper also presents, new . differential addition formulas for . curves with cost of ..
13#
發(fā)表于 2025-3-23 19:05:28 | 只看該作者
14#
發(fā)表于 2025-3-23 22:34:09 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:21 | 只看該作者
https://doi.org/10.1007/978-3-319-55227-9cryptography; elliptic curve; problem solving; Boolean functions; security; authentication; public key cry
16#
發(fā)表于 2025-3-24 10:22:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:15:22 | 只看該作者
On Pseudorandom Properties of Certain Sequences of Points on Elliptic Curvetions with small coefficients (e.g. .) of the orbit elements of a point with respect to a given endomorphism of the curve. We investigate the linear complexity and the distribution of these sequences. The result on the linear complexity answers a question of Igor Shparlinski.
18#
發(fā)表于 2025-3-24 16:19:29 | 只看該作者
A Note on the Brawley-Carlitz Theorem on Irreducibility of Composed Products of Polynomials over Fintivity of the binary operation for the composed product is not necessary. We then investigate binary operations defined by polynomial functions, and give a sufficient condition in terms of degrees for the requirement in the Brawley-Carlitz theorem.
19#
發(fā)表于 2025-3-24 19:18:17 | 只看該作者
20#
發(fā)表于 2025-3-25 01:17:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
黄梅县| 聂拉木县| 固安县| 儋州市| 兰溪市| 吴川市| 福建省| 开封市| 铜川市| 濉溪县| 建德市| 皮山县| 偏关县| 台南县| 通江县| 万州区| 沁源县| 江口县| 三门县| 肇庆市| 象州县| 清原| 鄱阳县| 瑞丽市| 澜沧| 金寨县| 沙湾县| 濉溪县| 敖汉旗| 太和县| 永兴县| 城固县| 定兴县| 屏东县| 峨眉山市| 手游| 余姚市| 皮山县| 蓝田县| 建瓯市| 黔江区|