找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 8th International Wo Jean Claude Bajard,Alev Topuzo?lu Conference proceedings 2021 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: Magnanimous
41#
發(fā)表于 2025-3-28 15:39:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:38:54 | 只看該作者
Recursion Polynomials of Unfolded Sequencestempts of modification, legitimate users should not be aware that it is embedded in the media. One of the techniques for watermarking is using an special variant of spread-spectrum technique, called frequency hopping. It requires ensembles of periodic binary sequences with low off-peak autocorrelati
43#
發(fā)表于 2025-3-29 02:34:28 | 只看該作者
44#
發(fā)表于 2025-3-29 03:49:26 | 只看該作者
45#
發(fā)表于 2025-3-29 08:57:53 | 只看該作者
On Subspaces of Kloosterman Zeros and Permutations of the Form f the inverse function. In this paper, we show that . cannot be a permutation on binary fields if the kernel of . or . is large. A key step of our proof is an observation on the maximal size of a subspace . of . that consists of Kloosterman zeros, i.e. a subspace . such that . for every . where . de
46#
發(fā)表于 2025-3-29 13:31:16 | 只看該作者
Explicit Factorization of Some Period Polynomialsthat ., if 4|.. Also let . such that .. Assume that . or . is semiprimitive modulo .. Under these conditions, we are going to obtain the explicit factorization of the period polynomial of degree . for the finite field .. In fact, we will see that such polynomial has always integer roots, meaning tha
47#
發(fā)表于 2025-3-29 17:06:58 | 只看該作者
48#
發(fā)表于 2025-3-29 23:41:39 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:21 | 只看該作者
50#
發(fā)表于 2025-3-30 07:38:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 10:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂拉木县| 偃师市| 龙井市| 昭平县| 临颍县| 平阴县| 拜城县| 鹤壁市| 玉树县| 天长市| 周至县| 永昌县| 柳林县| 昌邑市| 社会| 英吉沙县| 利津县| 沙坪坝区| 临漳县| 依兰县| 高唐县| 沅陵县| 桐梓县| 锡林浩特市| 哈巴河县| 饶阳县| 盘山县| 肥西县| 新密市| 青田县| 万荣县| 视频| 枣强县| 云南省| 布拖县| 大埔县| 蒙山县| 鹤壁市| 安平县| 汶川县| 习水县|