找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[復(fù)制鏈接]
樓主: 巡洋
41#
發(fā)表于 2025-3-28 18:35:26 | 只看該作者
p-adic Etale Cohomology,fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic . to the study of the moduli space when . = 2.
42#
發(fā)表于 2025-3-28 19:52:04 | 只看該作者
43#
發(fā)表于 2025-3-29 02:49:23 | 只看該作者
44#
發(fā)表于 2025-3-29 07:04:37 | 只看該作者
45#
發(fā)表于 2025-3-29 08:56:21 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:11 | 只看該作者
Linear Elastic Fracture Mechanics,al points of infinite order on an elliptic curve defined over a number field and the behaviour of its Hasse-Weil .-Series at the point . = 1 in the complex plane, as is predicted by the conjecture of Birch and Swinnerton-Dyer. Guided by Artin and Tate’s [15] success with the geometric analogue, most
47#
發(fā)表于 2025-3-29 18:03:17 | 只看該作者
48#
發(fā)表于 2025-3-29 23:24:58 | 只看該作者
p-adic Etale Cohomology,lling physical reasons (viz. time, space, and distance) however, I will give here only statements of results; and my coauthors have not had the opportunity to correct any stupidities which may have slipped in. The conjectures in §3 are my own. I like to think that this research has been strongly inf
49#
發(fā)表于 2025-3-30 00:32:32 | 只看該作者
50#
發(fā)表于 2025-3-30 06:34:41 | 只看該作者
Number Theoretic Applications of Polynomials with Rational Coefficients Defined by Extremality Condlysis. Among these classes we find orthogonal polynomials (especially classical orthogonal polynomials expressed as hypergeometric polynomials) and polynomials least deviating from zero on a given continuum (Chebicheff polynomials). Orthogonal polynomials of the first and second kind appear as denom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林州市| 金溪县| 苗栗县| 宁城县| 南溪县| 贺州市| 深水埗区| 亚东县| 信宜市| 康乐县| 织金县| 乌兰察布市| 通辽市| 卢龙县| 措美县| 文水县| 电白县| 那坡县| 巴塘县| 英超| 南京市| 鄂伦春自治旗| 陇川县| 平顶山市| 林西县| 西贡区| 尖扎县| 石家庄市| 横峰县| 兴仁县| 唐山市| 镇康县| 石狮市| 车险| 西乌| 郓城县| 肇州县| 威宁| 灵璧县| 镇巴县| 黔南|