找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復(fù)制鏈接]
樓主: HEIR
11#
發(fā)表于 2025-3-23 13:38:01 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:58 | 只看該作者
Overview of .NET Application Architectureof references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
13#
發(fā)表于 2025-3-23 21:23:35 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:05 | 只看該作者
Some Historical Notes,ly makes it much easier to state them than it was at the time when they were first used. Of course, this does not mean that we intend to critize those who invented them, which had to state them at a time when the technical means available were much weaker than those we have today.
15#
發(fā)表于 2025-3-24 05:15:42 | 只看該作者
,Abelian Varieties over ?,of references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
16#
發(fā)表于 2025-3-24 08:18:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:29:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:50:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:27:22 | 只看該作者
,Abelian Varieties over ?,ct. In the first section we prove some basic results on complex tori. The second section is devoted to a discussion of isogenics. The third section (the longest) describes the necessary and sufficient conditions that a complex torus must satisfy in order to be isomorphic to an abelian variety. In th
20#
發(fā)表于 2025-3-25 02:45:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤庆县| 滦平县| 林州市| 吉木乃县| 屏南县| 灌南县| 禹州市| 绥芬河市| 西城区| 梁山县| 滨海县| 西青区| 乌苏市| 微博| 贵定县| 昌邑市| 伊金霍洛旗| 绍兴市| 克拉玛依市| 萨嘎县| 阿克| 旅游| 津南区| 新民市| 德格县| 保亭| 松阳县| 怀集县| 安平县| 瑞金市| 八宿县| 吉林省| 邵阳县| 聂荣县| 阿图什市| 始兴县| 西盟| 舞钢市| 红安县| 岑溪市| 白水县|