找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arboreal Group Theory; Proceedings of a Wor Roger C. Alperin Conference proceedings 1991 Springer-Verlag New York, Inc. 1991 Group theory.a

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 10:15:15 | 只看該作者
Pregroups and Lyndon Length Functions, go back to Baer [.]. A pregroup is a set with a partial multiplication having certain group-like properties, to which one can associate a group (the universal group of the pregroup), and there is a normal form for the elements of the group in terms of the pregroup. This generalises the construction
52#
發(fā)表于 2025-3-30 13:17:29 | 只看該作者
,?-Tree Actions are Not Determined by the Translation Lengths of Finitely Many Elements,nslation length functions on . which arise from (small) .-actions on ?-trees. It is well known that, for any finitely generated group ., an element of Hom(.(2, ?)) is determined up to conjugation in .(2,?) by the traces of a finite set of elements of .. (See, for example, [.].) The purpose of this p
53#
發(fā)表于 2025-3-30 16:44:13 | 只看該作者
The Boundary of Outer Space in Rank Two,ce has come to be known as “outer space.” Outer space can be defined as a space of free actions of .. on simplicial ?-trees; we require that all actions be minimal, and we identify two actions if they differ only by scaling the metric on the ?-tree. To describe the topology on outer space, we associ
54#
發(fā)表于 2025-3-31 00:04:14 | 只看該作者
,Cohomological dimension of groups acting on ?-trees,ch act freely on ?-trees. It is a classical theorem that any group which acts freely, without inversions, on a simplicial tree is free. If . is a Λ-tree for Λ ? ? a subgroup (possibly equal to ? itself), it is clear that not only free groups can act freely on an ?-tree but that free abelian groups,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥芬河市| 栖霞市| 宜昌市| 阳信县| 子长县| 安吉县| 吴江市| 景宁| 宜兴市| 河东区| 平谷区| 桂林市| 大丰市| 永春县| 高平市| 类乌齐县| 永吉县| 蒲城县| 汾西县| 郴州市| 城步| 洞头县| 东莞市| 陕西省| 新巴尔虎右旗| 郧西县| 宣威市| 花莲市| 林口县| 海淀区| 江阴市| 道真| 车险| 镇安县| 大埔区| 塘沽区| 墨竹工卡县| 灵丘县| 四子王旗| 南召县| 富平县|