找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arbeitstagung Bonn 2013; In Memory of Friedri Werner Ballmann,Christian Blohmann,Don Zagier Book 2016 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: Cession
11#
發(fā)表于 2025-3-23 12:43:26 | 只看該作者
European Solidarity Under ScrutinyThe ground field . is algebraically closed and of characteristic zero. Let . be a connected semisimple algebraic group, and . a maximal torus inside a Borel subgroup ..
12#
發(fā)表于 2025-3-23 14:03:28 | 只看該作者
The Concept of European Identity,A mostly expository account of old questions about the relationship between polyhedra and topological manifolds. Topics are old topological results, new gauge theory results (with speculations about next directions), and history of the questions.
13#
發(fā)表于 2025-3-23 18:13:44 | 只看該作者
14#
發(fā)表于 2025-3-24 01:58:51 | 只看該作者
The Hirzebruch Signature Theorem for Conical Metrics,Exactly 60 years ago the young Fritz Hirzebruch came up with two spectacular theorems [., .] which set the scene for the future development of algebraic geometry and topology.
15#
發(fā)表于 2025-3-24 03:08:48 | 只看該作者
Depth and the Local Langlands Correspondence,Let . be an inner form of a general linear group over a non-archimedean local field. We prove that the local Langlands correspondence for . preserves depths. We also show that the local Langlands correspondence for inner forms of special linear groups preserves the depths of essentially tame Langlands parameters.
16#
發(fā)表于 2025-3-24 08:55:42 | 只看該作者
17#
發(fā)表于 2025-3-24 10:48:01 | 只看該作者
,Kazhdan–Lusztig Conjectures and Shadows of Hodge Theory,We give an informal introduction to the authors’ work on some conjectures of Kazhdan and Lusztig, building on work of Soergel and de Cataldo–Migliorini. This article is an expanded version of a lecture given by the second author at the Arbeitstagung in memory of Frederich Hirzebruch.
18#
發(fā)表于 2025-3-24 16:10:19 | 只看該作者
,On Lusztig’s ,-Analogues of All Weight Multiplicities of a Representation,The ground field . is algebraically closed and of characteristic zero. Let . be a connected semisimple algebraic group, and . a maximal torus inside a Borel subgroup ..
19#
發(fā)表于 2025-3-24 20:59:29 | 只看該作者
20#
發(fā)表于 2025-3-25 01:21:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沭县| 油尖旺区| 阜阳市| 芜湖县| 乌拉特中旗| 磐安县| 玉山县| 上饶县| 崇州市| 定结县| 荣昌县| 广昌县| 隆化县| 舟曲县| 象州县| 安溪县| 正蓝旗| 泸州市| 湖口县| 堆龙德庆县| 扬中市| 宁国市| 诸城市| 枣强县| 共和县| 汕尾市| 西丰县| 鹿邑县| 海门市| 保康县| 正宁县| 栾城县| 龙海市| 康定县| 峨边| 翼城县| 祁东县| 祁连县| 澎湖县| 保亭| 彩票|