找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arakelov Geometry over Adelic Curves; Huayi Chen,Atsushi Moriwaki Book 2020 Springer Nature Singapore Pte Ltd. 2020 Arakelov geometry.Adel

[復(fù)制鏈接]
樓主: ISH
21#
發(fā)表于 2025-3-25 04:41:28 | 只看該作者
22#
發(fā)表于 2025-3-25 10:40:41 | 只看該作者
23#
發(fā)表于 2025-3-25 12:41:10 | 只看該作者
Arakelov Geometry over Adelic Curves978-981-15-1728-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
24#
發(fā)表于 2025-3-25 16:28:22 | 只看該作者
25#
發(fā)表于 2025-3-25 20:54:42 | 只看該作者
26#
發(fā)表于 2025-3-26 01:46:14 | 只看該作者
Metrized vector bundles: local theory,fundament for the global study of adelic vector bundles. Note that we need to consider both Archimedean and non-Archimedean cases. Hence we carefully choose the approach of presentation to unify the statements whenever possible, and to clarify the differences.
27#
發(fā)表于 2025-3-26 04:51:23 | 只看該作者
Adelic curves,47] in the number field setting. This theory allows to consider all places of a global field in a unified way. It also leads to a uniform approach in the geometry of numbers in global fields, either via the adelic version of Minkowski’s theorems and Siegel’s lemma developed by McFeat [105], Bombieri
28#
發(fā)表于 2025-3-26 08:57:41 | 只看該作者
Slopes of tensor product,recisely, give a family . of adelic vector bundles over a proper adelic curve ., we give a lower bound of . in terms of the sum of the minimal slopes of . minus a term which is the product of three half of the measure of the infinite places and the sum of ., see Corollary 5.6.2 for details. This res
29#
發(fā)表于 2025-3-26 16:15:58 | 只看該作者
,Nakai-Moishezon’s criterion,is dense in each .., where .?∈?.. We let .. be the set of all .?∈?. such that |?|. is the trivial absolute value. Note that, if .. is not empty, then the above hypothesis implies that, either the .-algebra . is discrete, or the field . is countable.
30#
發(fā)表于 2025-3-26 20:00:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 10:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上犹县| 隆回县| 阳原县| 吉安县| 芜湖县| 井冈山市| 桃江县| 德惠市| 同心县| 格尔木市| 天等县| 曲麻莱县| 工布江达县| 西林县| 白玉县| 长乐市| 化隆| 光山县| 游戏| 广州市| 依安县| 牟定县| 万山特区| 苍山县| 孟村| 文登市| 葵青区| 东平县| 江陵县| 黑水县| 南和县| 如东县| 冷水江市| 庆安县| 正阳县| 米脂县| 桐庐县| 永清县| 朝阳县| 惠州市| 从江县|