找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques; 7th International Wo Klaus Jansen,Sanjeev Khanna,Da

[復制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-27 00:53:09 | 只看該作者
32#
發(fā)表于 2025-3-27 01:55:47 | 只看該作者
https://doi.org/10.1007/978-3-319-74908-2pping. The total additive distortion is the sum of errors in all pairwise distances in the input data. This problem has been shown to be NP-hard by [13]. We give an .(log.) approximation for this problem by using Garg?.’s?[10] algorithm for the multi-cut problem as a subroutine. Our algorithm also g
33#
發(fā)表于 2025-3-27 07:48:27 | 只看該作者
Dynamics of Geodesic and Horocyclic Flows,hs of at most logarithmic radius, an .(log..) additive approximation algorithm is known, hence our lower bound is tight. To the best of our knowledge, this is the first tight additive polylogarithmic approximation result.
34#
發(fā)表于 2025-3-27 12:48:53 | 只看該作者
Jouni Parkkonen,Frédéric Paulinontains two variables. Hastad shows that this problem is NP-hard to approximate within a ratio of 11/12 + . for .=2, and Andersson, Engebretsen and Hastad show the same hardness of approximation ratio for . ≥ 11, and somewhat weaker results (such as 69/70) for . = 3,5,7. We prove that max-2lin. is e
35#
發(fā)表于 2025-3-27 14:11:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:14:10 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:51 | 只看該作者
Theodore P. Hill,Ulrich Krengel algorithms for ... which is the problem to satisfy as many conjunctions, each of size at most ., as possible. As observed by Trevisan, this leads to approximation algorithms with the same approximation ratio for the more general problem ..., where instead of conjunctions arbitrary .-ary constraints
38#
發(fā)表于 2025-3-28 03:50:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:55:31 | 只看該作者
40#
發(fā)表于 2025-3-28 13:42:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尼玛县| 阳朔县| 麟游县| 淮安市| 浏阳市| 舞钢市| 菏泽市| 仪征市| 石景山区| 连平县| 乐山市| 上饶县| 南皮县| 榆中县| 龙江县| 富平县| 大余县| 龙胜| 平顶山市| 湘乡市| 迁安市| 连城县| 德阳市| 广平县| 汝阳县| 荣成市| 临颍县| 海丰县| 蕉岭县| 庆阳市| 新竹县| 类乌齐县| 兴国县| 华阴市| 金沙县| 苍南县| 潜江市| 新营市| 柳林县| 乌兰察布市| 田阳县|