找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Complex Analysis, and Potential Theory; N. Arakelian,P. M. Gauthier,G. Sabidussi Book 2001 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 欺侮
31#
發(fā)表于 2025-3-26 22:08:09 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:53 | 只看該作者
https://doi.org/10.1007/BFb0111932y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
33#
發(fā)表于 2025-3-27 08:33:15 | 只看該作者
Harmonic approximation and its applications,y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
34#
發(fā)表于 2025-3-27 11:50:17 | 只看該作者
https://doi.org/10.1007/BFb0111694given sequence of complex numbers as its (multiplicity) index values..To examine the second problem, we present a new, purely analytic approach. Finally, we suggest an analytic method of construction of entire functions of finite order with joint deficient functions and index values.
35#
發(fā)表于 2025-3-27 17:39:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:36:56 | 只看該作者
37#
發(fā)表于 2025-3-27 22:03:55 | 只看該作者
38#
發(fā)表于 2025-3-28 05:44:31 | 只看該作者
Springer Tracts in Modern Physics 12h uniform and tangential approximation are treated. We also give some applications of the theory to the construction of harmonic functions exhibiting various kinds of unexpected behaviour. The course is partly intended to provide preparatory material for S. J. Gardiner’ course “Harmonic approximation and applications”, published in this volume.
39#
發(fā)表于 2025-3-28 10:14:01 | 只看該作者
40#
發(fā)表于 2025-3-28 11:22:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湛江市| 崇阳县| 周口市| 崇阳县| 个旧市| 宁晋县| 星座| 鹤岗市| 杂多县| 嘉定区| 进贤县| 井陉县| 中山市| 收藏| 冷水江市| 古田县| 乡宁县| 通州市| 昭觉县| 普兰县| 曲沃县| 西峡县| 青河县| 西青区| 长汀县| 南陵县| 尚义县| 江城| 泰和县| 全州县| 通山县| 永新县| 海宁市| 建平县| 石楼县| 青铜峡市| 鄂托克前旗| 泌阳县| 宁化县| 扎兰屯市| 浦县|