找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation of Euclidean Metric by Digital Distances; Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer

[復(fù)制鏈接]
樓主: mountebank
11#
發(fā)表于 2025-3-23 10:39:02 | 只看該作者
cs by digital distances from the mid-sixties of the previous century. The book also contains an in-depth presentation of recent progress, and new research problems in this area.?.978-981-15-9900-2978-981-15-9901-9
12#
發(fā)表于 2025-3-23 17:27:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:00:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:52:25 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:31 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:26 | 只看該作者
Error Analysis: Analytical Approaches,The chapter discusses analytical approaches for analysis of errors of approximating Euclidean metrics by digital metrics. Toward this, various analytical error measures have been defined and their upper-bounds in integral and real spaces are discussed. It also considers the empirical analysis of approximation errors.
17#
發(fā)表于 2025-3-24 14:00:20 | 只看該作者
Conclusion,The chapter concludes the discussion of error analysis in this book by presenting a comparative study on performances of various representative distances in approximating Euclidean metrics.
18#
發(fā)表于 2025-3-24 16:49:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:49 | 只看該作者
P. Frick,G.-A. Harnack,A. Praderf distance functions, and many of the results derived for them are shown as special cases of the properties of the general class of distance function. It includes discussion on m-neighbor distances, t-cost distances, generalized octagonal distances, chamfering weighted distances, weighted t-cost dis
20#
發(fā)表于 2025-3-24 23:36:37 | 只看該作者
https://doi.org/10.1007/978-3-642-69841-5are discussed. It defines different types of geometric errors using those properties for evaluating the proximity of distance functions to Euclidean metrics. Finally, it presents a hybrid approach of computing analytical error from geometric measurements on hyperspheres.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 方山县| 克什克腾旗| 双鸭山市| 田东县| 永城市| 句容市| 双桥区| 禄劝| 上虞市| 台湾省| 招远市| 运城市| 石阡县| 丹阳市| 舒城县| 岑巩县| 克东县| 会宁县| 尉氏县| 曲松县| 黄山市| 扎囊县| 万州区| 平江县| 敖汉旗| 巨鹿县| 海宁市| 通山县| 镇康县| 孟村| 寻甸| 吴桥县| 高青县| 通城县| 辽阳市| 固镇县| 宿州市| 定西市| 县级市| 迁西县|