找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation by Solutions of Partial Differential Equations; B. Fuglede,M. Goldstein,L. Rogge Book 1992 Springer Science+Business Media D

[復(fù)制鏈接]
樓主: PLY
21#
發(fā)表于 2025-3-25 05:47:41 | 只看該作者
H. Lindemann,F. Keller,H. G. Velcovskye operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
22#
發(fā)表于 2025-3-25 10:16:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:03:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:51 | 只看該作者
26#
發(fā)表于 2025-3-26 00:40:46 | 只看該作者
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
Mean Value Theorems and Best ,,-Approximation,ual) two functions .. and .. are identified if they are equal Lebesgue a.e.. Further, let . be a vector subspace of ..(.) and suppose that . ? ..(.) ., and that .* ? .. Then .* is called a ...-... if and only if‖.? .*‖. ≥ ‖. ? .‖... ? ..
28#
發(fā)表于 2025-3-26 09:00:12 | 只看該作者
Mapping Properties of the Wave Operators in Scattering Theory,e operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
29#
發(fā)表于 2025-3-26 15:13:11 | 只看該作者
The Role of the Hilbert Transform in 2-Dimensional Aerodynamics, known that the Hilbert transform . plays an important role in various areas of aerodynamics for thin obstacles [4], and in this note we show, as an application of ., how to define the natural steady flows outside a thin obstacle.
30#
發(fā)表于 2025-3-26 17:46:22 | 只看該作者
K. G. Blume,H. Arnold,G. W. L?hrTwo separate but related topics are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀什市| 大同县| 泌阳县| 揭阳市| 德惠市| 峡江县| 内黄县| 康平县| 天津市| 育儿| 彩票| 米泉市| 天津市| 兴业县| 无为县| 建昌县| 报价| 平原县| 井陉县| 肃南| 南安市| 姜堰市| 新巴尔虎右旗| 合作市| 仁寿县| 峨边| 沁阳市| 双桥区| 峨山| 南召县| 阳江市| 昭苏县| 池州市| 曲麻莱县| 仙桃市| 临沧市| 左权县| 永仁县| 扬中市| 崇明县| 彭州市|