找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation and Optimization; Proceedings of the I Juan Alfredo Gómez-Fernandez,Francisco Guerra-Vázq Conference proceedings 1988 Springe

[復(fù)制鏈接]
樓主: Heel-Spur
31#
發(fā)表于 2025-3-26 21:44:21 | 只看該作者
32#
發(fā)表于 2025-3-27 01:49:39 | 只看該作者
,Das v. Pirquetsche System der Ern?hrung,", were first obtained by Walsh when he solved the case of polynomials interpolating on the roots of unity and at the origin. In the second part of this paper we also extend this study to differences of simultaneous rational interpolants of type (α,β).
33#
發(fā)表于 2025-3-27 07:12:09 | 只看該作者
,On simul taneous rational interpolants of type (α,β),", were first obtained by Walsh when he solved the case of polynomials interpolating on the roots of unity and at the origin. In the second part of this paper we also extend this study to differences of simultaneous rational interpolants of type (α,β).
34#
發(fā)表于 2025-3-27 12:08:40 | 只看該作者
35#
發(fā)表于 2025-3-27 15:23:42 | 只看該作者
36#
發(fā)表于 2025-3-27 19:13:01 | 只看該作者
37#
發(fā)表于 2025-3-27 21:56:23 | 只看該作者
Parametric optimization: Pathfollowing with jumps,as to jump to another branch of local minima in order to continue the execution of the desired process. In case that the feasible set in a neighborhood of such a mentioned endpoint remains nonempty for increasing parameter values, it will be shown how a jump can be realized.
38#
發(fā)表于 2025-3-28 05:36:01 | 只看該作者
39#
發(fā)表于 2025-3-28 06:58:13 | 只看該作者
Approximation by lipschitz functions and its application to boundary value of cauchy-type integrals
40#
發(fā)表于 2025-3-28 13:15:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄梅县| 乌鲁木齐县| 肇州县| 弋阳县| 固镇县| 吐鲁番市| 渭源县| 美姑县| 商水县| 库车县| 同仁县| 醴陵市| 互助| 温州市| 高雄县| 福贡县| 浦东新区| 南宫市| 黔东| 漳浦县| 泽库县| 边坝县| 军事| 怀远县| 东台市| 沅江市| 长沙市| 虞城县| 宕昌县| 平陆县| 庆元县| 邮箱| 淮南市| 清河县| 万源市| 剑河县| 宜良县| 平江县| 双桥区| 孝感市| 新余市|