找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory, Spline Functions and Applications; S. P. Singh Book 1992 Springer Science+Business Media Dordrecht 1992 Invariant.Ma

[復(fù)制鏈接]
樓主: Disclose
21#
發(fā)表于 2025-3-25 07:11:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:06:53 | 只看該作者
Weighted Polynomials,Weighted polynomials are functions of the form where.(.)...(.), . ≥ 1, where .(.) is a nonnegative continuous function on a closed set . ? ?, and the .. are algebraic polynomials of degree ≤ n. Our main interest is to characterize those functions . which are uniformly approximable on . by the weighted polynomials.
23#
發(fā)表于 2025-3-25 14:00:25 | 只看該作者
On The Effectiveness of Some Inversion Methods For Noisy Fourier Series,A recent very general method for inversion of noisy Fourier series (given in [2]) employs suitable approximate units. In this paper, for some classical kernels, we give the estimates of the parameters involved in the method and we test it numerically.
24#
發(fā)表于 2025-3-25 17:45:32 | 只看該作者
Korovkin Theorems For Vector-Valued Continuous Functions,In this paper we consider some Korovkin type results in the space of continuous functions with values in a fixed locally convex space; we give some conditions which generalize in a natural way those well-known for continuous real-valued functions.
25#
發(fā)表于 2025-3-25 21:55:32 | 只看該作者
On Modified Bojanic-Shisha Operators,Rates of convergence of certain approximation methods are given for functions whose smoothness is measured in terms of the second modulus of continuity.
26#
發(fā)表于 2025-3-26 03:10:12 | 只看該作者
A Property of Zeros and Cotes Numbers of Hermite and Laguerre Orthogonal Polynomials,A property of localization of the zeros of three consecutive orthogonal polynomials of Hermite and Laguerre is proved. Then, a monotonic property of Cotes Numbers for abscissas of Hermite and Laguerre is, also proved.
27#
發(fā)表于 2025-3-26 04:48:09 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:16:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛冈县| 和平区| 张家港市| 余姚市| 大宁县| 缙云县| 项城市| 塔河县| 荆州市| 平泉县| 武清区| 延安市| 仁布县| 梁山县| 巨鹿县| 佛学| 千阳县| 文成县| 陆川县| 山东省| 康马县| 呼伦贝尔市| 景德镇市| 余庆县| 客服| 闽清县| 略阳县| 常山县| 温州市| 广丰县| 台江县| 和田市| 洪湖市| 钟祥市| 旌德县| 凭祥市| 安阳市| 临邑县| 柯坪县| 寿阳县| 蒙阴县|