找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory and Harmonic Analysis on Spheres and Balls; Feng Dai,Yuan Xu Book 2013 Springer Science+Business Media New York 2013

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 13:19:54 | 只看該作者
Harmonic Analysis on the Unit Ball, however, that analysis on the unit ball is closely related to analysis on the unit sphere. Indeed, a large portion of harmonic analysis on the unit ball can be deduced from its counterparts on the sphere.
12#
發(fā)表于 2025-3-23 16:47:44 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:29 | 只看該作者
14#
發(fā)表于 2025-3-24 02:10:22 | 只看該作者
Harmonic Analysis Associated with Reflection Groups,ighted approximation and harmonic analysis on the sphere, which turn out to be indispensable for the corresponding theory, even for unweighted approximation and harmonic analysis, on the unit ball and on the simplex, as will be seen in later chapters.
15#
發(fā)表于 2025-3-24 05:51:49 | 只看該作者
1439-7382 ful research material for both experts and advanced graduate.This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area.? While the first part of the book contains mainstream mate
16#
發(fā)表于 2025-3-24 08:45:57 | 只看該作者
https://doi.org/10.1007/978-3-662-32547-6the Poisson integrals for the Fourier expansion in spherical harmonics, discussed in the second section, are convolution operators, which are also multiplier operators. The convolution and translation operators are used to define and study the Hardy–Littlewood maximal function on the sphere in the third section.
17#
發(fā)表于 2025-3-24 10:42:48 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:20 | 只看該作者
Zeitschrift für die gesamte Anatomiech results for .-harmonic expansions with respect to the product ., which cover results for ordinary spherical harmonic expansions. The proof of such results depends on the boundedness of proj ection operators, which will be established in the first section, assuming a critical estimate.
19#
發(fā)表于 2025-3-24 21:19:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 蓬莱市| 永德县| 乐都县| 龙川县| 广西| 阿合奇县| 昭通市| 梁山县| 嫩江县| 璧山县| 津南区| 邵武市| 任丘市| 法库县| 扶沟县| 且末县| 缙云县| 清丰县| 大冶市| 自治县| 葫芦岛市| 林周县| 巴林右旗| 神农架林区| 台南县| 商南县| 古蔺县| 武鸣县| 霍邱县| 高邮市| 承德县| 武山县| 荣昌县| 交城县| 余庆县| 防城港市| 都昌县| 栾城县| 宾阳县| 嘉黎县|