找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory XIV: San Antonio 2013; Gregory E. Fasshauer,Larry L. Schumaker Conference proceedings 2014 Springer International Pub

[復(fù)制鏈接]
樓主: vein220
51#
發(fā)表于 2025-3-30 11:05:46 | 只看該作者
52#
發(fā)表于 2025-3-30 12:27:05 | 只看該作者
53#
發(fā)表于 2025-3-30 17:32:26 | 只看該作者
54#
發(fā)表于 2025-3-30 21:29:02 | 只看該作者
55#
發(fā)表于 2025-3-31 03:35:32 | 只看該作者
Beitr?ge zur Produktionswirtschaftse-distance weight functions, producing similar values around data points. In this paper, a parametric version of Shepard interpolation is introduced that avoids flat horizontal spots. Because Shepard interpolation or its parametric version does not require the solution of a system of equations, the
56#
發(fā)表于 2025-3-31 06:20:28 | 只看該作者
https://doi.org/10.1007/978-3-662-59819-1eason for their success is their superior ability to optimally resolve anisotropic structures such as singularities concentrated on lower dimensional embedded manifolds, for instance, edges in images or shock fronts in solutions of transport dominated equations. By now, a large variety of such aniso
57#
發(fā)表于 2025-3-31 10:38:59 | 只看該作者
58#
發(fā)表于 2025-3-31 13:42:50 | 只看該作者
59#
發(fā)表于 2025-3-31 20:42:01 | 只看該作者
Erfolgswirkung des Management-Stils commonly used positive integral operators on spheres. This approach is novel and effective. We develop two readily verifiable and implementable conditions for the kernels of the integral operators under which favorable decay rates of eigenvalue sequences are derived. The first one (based on spheric
60#
發(fā)表于 2025-4-1 01:39:59 | 只看該作者
https://doi.org/10.1007/978-3-8349-8001-4 important task with a variety of applications. The use of rank-1 lattices as spatial discretizations offers a suitable possibility for sampling such sparse trigonometric polynomials. Given an arbitrary index set of frequencies, we construct rank-1 lattices that allow a stable and unique discrete Fo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五峰| 屏南县| 铜梁县| 卢氏县| 新蔡县| 衡山县| 赣榆县| 于田县| 旺苍县| 怀宁县| 扎鲁特旗| 明星| 莎车县| 遂宁市| 蓬安县| 龙游县| 长武县| 南京市| 得荣县| 安新县| 大新县| 泾源县| 无为县| 万州区| 古浪县| 双辽市| 武陟县| 华宁县| 乌鲁木齐县| 鱼台县| 宁武县| 海阳市| 乐清市| 卫辉市| 将乐县| 昔阳县| 建宁县| 绍兴县| 法库县| 黄石市| 广东省|