找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied and Industrial Mathematics, Venice—2, 1998; Selected Papers from Renato Spigler Book 2000 Springer Science+Business Media Dordrecht

[復制鏈接]
樓主: Monomania
11#
發(fā)表于 2025-3-23 11:20:00 | 只看該作者
On the solution of the Whitham equations: An estimate of the genusollection of systems of hyperbolic [.] partial differential equations in Riemann invariant form [[.,[.].which is called Whitham equations. For . =0 (1.2) coincides with the dispersion-less KdV equation . which is called Burgers equation.
12#
發(fā)表于 2025-3-23 14:30:34 | 只看該作者
13#
發(fā)表于 2025-3-23 18:35:14 | 只看該作者
Elements for a Philosophy of Individuationmetry problems of Volterra type, for the problems concerned there take place exponential estimates of conditional stability, i. e., these problems are weakly ill-posed. The results presented in this paper were obtained by the author together with Akr. Kh. Begmatov (Samarkand State University).
14#
發(fā)表于 2025-3-24 00:31:12 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:55 | 只看該作者
Rationality and Experimental Economicsain a simple hyperbolic saddle then vortex stretching may take place. We show that the angle of the saddle can not close faster than a double exponential in time and there is no breakdown. Similar results are obtain in two dimensional models.
16#
發(fā)表于 2025-3-24 07:38:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:03 | 只看該作者
Epistemology of the Human Sciencesrators in abstract cones, providing a unified treatment for bounded (radiative transfer, neutron transport) and unbounded (kinetic theory of gases) domains. Numerical examples for the latter case (purely integral Boltzmann models) are presented, also comparing optimally relaxed Picard-like methods with an efficient Newton-like solver.
18#
發(fā)表于 2025-3-24 15:32:14 | 只看該作者
19#
發(fā)表于 2025-3-24 19:12:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:00 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 12:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
府谷县| 嘉鱼县| 仙游县| 武强县| 茌平县| 稻城县| 玛曲县| 泉州市| 商都县| 若羌县| 柳江县| 泰宁县| 桐梓县| 内黄县| 大同县| 揭西县| 镇沅| 易门县| 宝应县| 康乐县| 湘乡市| 朝阳区| 新平| 鲁山县| 株洲市| 屏东县| 湛江市| 静海县| 苍山县| 五家渠市| 湘潭县| 贺州市| 城市| 龙川县| 云南省| 星座| 绍兴县| 白朗县| 涞水县| 阿坝| 辛集市|