找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Summability Methods; M. Mursaleen Book 2014 M. Mursaleen 2014 Korovkin approximation theorems.Lambert summability.Lototski summabi

[復(fù)制鏈接]
樓主: TIBIA
11#
發(fā)表于 2025-3-23 10:33:21 | 只看該作者
Summability Methods for Random Variables,Let (..) be a sequence of independent, identically distributed (i.i.d.) random variables with . | .. | < . and .. = ., . = 1, 2, .. Let . = (..) be a Toeplitz matrix, i.e., the conditions (1.3.1)–(1.3.3) of Theorem 1.3.3 are satisfied by the matrix . = (..). Since . the series . converges absolutely with probability one.
12#
發(fā)表于 2025-3-23 16:52:18 | 只看該作者
Matrix Summability of Fourier and Walsh-Fourier Series,In this chapter we apply regular and almost regular matrices to find the sum of derived Fourier series, conjugate Fourier series, and Walsh-Fourier series (see [4] and [69]). Recently, Móricz [67] has studied statistical convergence of sequences and series of complex numbers with applications in Fourier analysis and summability.
13#
發(fā)表于 2025-3-23 20:24:11 | 只看該作者
14#
發(fā)表于 2025-3-23 22:22:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:55:02 | 只看該作者
16#
發(fā)表于 2025-3-24 08:35:03 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 16:56:26 | 只看該作者
19#
發(fā)表于 2025-3-24 22:40:58 | 只看該作者
https://doi.org/10.1007/978-3-642-80463-2. In [66], Moricz mentioned that Henry Fast first time had heard about this concept from Steinhaus, but in fact it was Antoni Zygmund who proved theorems on the statistical convergence of Fourier series in the first edition of his book [101, pp. 181–188] where he used the term “almost convergence” i
20#
發(fā)表于 2025-3-25 02:08:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广河县| 镇江市| 玉溪市| 石台县| 常德市| 罗山县| 仙桃市| 潜山县| 宁波市| 文化| 阜新市| 日喀则市| 永胜县| 隆子县| 柳江县| 莆田市| 体育| 布拖县| 利川市| 太保市| 尉犁县| 浠水县| 奈曼旗| 罗山县| 百色市| 霍林郭勒市| 彭泽县| 三江| 福安市| 周口市| 乃东县| 广西| 满城县| 潢川县| 曲松县| 泾川县| 四平市| 花莲市| 安义县| 平邑县| 雅安市|