找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Statistical Learning; With Case Studies in Matthias Schonlau Textbook 2023 The Editor(s) (if applicable) and The Author(s), under e

[復制鏈接]
樓主: Intermediary
31#
發(fā)表于 2025-3-27 00:39:31 | 只看該作者
The Naive Bayes Classifier,sifier the designation “naive.” The assumption greatly simplifies calculations; the naive Bayes classifier is very fast. The assumption trades off increased bias with reduced variance making the classifier surprisingly successful. The Naive Bayes classifier often benefits from smoothing. We discuss
32#
發(fā)表于 2025-3-27 02:18:01 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:07 | 只看該作者
Random Forests,ition, at each split, random forests only consider a random subset of x-variables. This promotes the use of a larger number of x-variables and makes the algorithm less dependent on a small number of variables. For any one tree, roughly one third of the observations are not in the bootstrap sample an
34#
發(fā)表于 2025-3-27 12:48:20 | 只看該作者
Boosting,g. We talk about variable influence as a way of computing the contribution of individual variables and contrast this approach with variable importance as used in random forests. We discuss tuning parameters and the effect of individual tuning parameters on computing time. We also introduce an increa
35#
發(fā)表于 2025-3-27 16:31:41 | 只看該作者
Support Vector Machines, line and the nearest observation of either class is maximized. Often the classes are not separable, i.e., they do not form separate clouds in x-space. In that case, a cost parameter allows for a certain amount of classification error. By deriving additional x-variables (e.g., quadratic terms), we c
36#
發(fā)表于 2025-3-27 21:04:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:42:58 | 只看該作者
Neural Networks,or regression and multi-class classification. We discuss a number of common activation functions that contribute nonlinearity in an otherwise linear network. We cover vanishing and exploding gradients, weight initialization—to attenuate the vanishing gradient problem—stochastic gradient descent usin
38#
發(fā)表于 2025-3-28 03:29:40 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:52 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 22:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高雄县| 蒲江县| 寿宁县| 铅山县| 郯城县| 洪江市| 桂林市| 菏泽市| 永靖县| 洛阳市| 阿巴嘎旗| 临沭县| 临潭县| 门头沟区| 策勒县| 辽源市| 韶山市| 呼伦贝尔市| 博客| 上虞市| 兴安县| 张家口市| 黔西| 利辛县| 乐业县| 汉中市| 灵寿县| 海盐县| 常宁市| 丘北县| 榆林市| 张家川| 定兴县| 平和县| 黄石市| 双牌县| 广饶县| 湛江市| 雷波县| 汕头市| 罗田县|