找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Statistical Learning; With Case Studies in Matthias Schonlau Textbook 2023 The Editor(s) (if applicable) and The Author(s), under e

[復制鏈接]
樓主: Intermediary
31#
發(fā)表于 2025-3-27 00:39:31 | 只看該作者
The Naive Bayes Classifier,sifier the designation “naive.” The assumption greatly simplifies calculations; the naive Bayes classifier is very fast. The assumption trades off increased bias with reduced variance making the classifier surprisingly successful. The Naive Bayes classifier often benefits from smoothing. We discuss
32#
發(fā)表于 2025-3-27 02:18:01 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:07 | 只看該作者
Random Forests,ition, at each split, random forests only consider a random subset of x-variables. This promotes the use of a larger number of x-variables and makes the algorithm less dependent on a small number of variables. For any one tree, roughly one third of the observations are not in the bootstrap sample an
34#
發(fā)表于 2025-3-27 12:48:20 | 只看該作者
Boosting,g. We talk about variable influence as a way of computing the contribution of individual variables and contrast this approach with variable importance as used in random forests. We discuss tuning parameters and the effect of individual tuning parameters on computing time. We also introduce an increa
35#
發(fā)表于 2025-3-27 16:31:41 | 只看該作者
Support Vector Machines, line and the nearest observation of either class is maximized. Often the classes are not separable, i.e., they do not form separate clouds in x-space. In that case, a cost parameter allows for a certain amount of classification error. By deriving additional x-variables (e.g., quadratic terms), we c
36#
發(fā)表于 2025-3-27 21:04:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:42:58 | 只看該作者
Neural Networks,or regression and multi-class classification. We discuss a number of common activation functions that contribute nonlinearity in an otherwise linear network. We cover vanishing and exploding gradients, weight initialization—to attenuate the vanishing gradient problem—stochastic gradient descent usin
38#
發(fā)表于 2025-3-28 03:29:40 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:52 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:29 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鲁甸县| 南通市| 柏乡县| 绍兴县| 道孚县| 仁怀市| 高密市| 盘山县| 昂仁县| 进贤县| 台中市| 清涧县| 和龙市| 伊吾县| 马山县| 五常市| 望奎县| 璧山县| 理塘县| 韶关市| 荣昌县| 西充县| 临武县| 贡山| 赣榆县| 肃北| 张掖市| 襄垣县| 溧阳市| 达孜县| 梧州市| 福建省| 徐州市| 眉山市| 太保市| 兴仁县| 公主岭市| 南华县| 光泽县| 屯留县| 灌云县|