找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Reconfigurable Computing. Architectures, Tools, and Applications; 14th International S Nikolaos Voros,Michael Huebner,Pedro C. Dini

[復(fù)制鏈接]
樓主: 巡洋
51#
發(fā)表于 2025-3-30 09:37:55 | 只看該作者
Applied Reconfigurable Computing. Architectures, Tools, and Applications14th International S
52#
發(fā)表于 2025-3-30 14:19:53 | 只看該作者
Stacia Ryder,Michael Mikulewiczperformance LSTM execution in time-constrained applications. Quantitative evaluation on a real-life image captioning application indicates that the proposed system required up?to 6.5. less time to achieve the same application-level accuracy compared to a baseline method, while achieving an average o
53#
發(fā)表于 2025-3-30 20:19:31 | 只看該作者
Potential and Flow Visualizationlly provide insightful observation. For example, one of our tests show 32-bit floating point is more hardware efficient than 1-bit parameters to achieve 99% MNIST accuracy. In general, 2-bit and 4-bit fixed point parameters show better hardware trade-off on small-scale datasets like MNIST and CIFAR-
54#
發(fā)表于 2025-3-30 21:49:26 | 只看該作者
55#
發(fā)表于 2025-3-31 03:26:34 | 只看該作者
Matthew H. England,Peter R. Oke relevant information. Through this paper, we present ReneGENE-GI, an innovatively engineered GI pipeline. We also present the performance analysis of ReneGENE-GI’s Comparative Genomics Module (CGM), prototyped on a reconfigurable bio-computing accelerator platform. Alignment time for this prototype
56#
發(fā)表于 2025-3-31 06:51:59 | 只看該作者
Approximate FPGA-Based LSTMs Under Computation Time Constraintsing Artificial Intelligence tasks. Nevertheless, the highest performing LSTM models are becoming increasingly demanding in terms of computational and memory load. At the same time, emerging latency-sensitive applications including mobile robots and autonomous vehicles often operate under stringent c
57#
發(fā)表于 2025-3-31 09:26:22 | 只看該作者
Redundancy-Reduced MobileNet Acceleration on Reconfigurable Logic for ImageNet Classificationred to many conventional feature-based computer vision algorithms. However, the high computational complexity of CNN models can lead to low system performance in power-efficient applications. In this work, we firstly highlight two levels of model redundancy which widely exist in modern CNNs. Additio
58#
發(fā)表于 2025-3-31 15:53:40 | 只看該作者
59#
發(fā)表于 2025-3-31 18:41:58 | 只看該作者
Deep Learning on High Performance FPGA Switching Boards: Flow-in-Cloudnected to other nodes. Unlike other multi-FPGA systems, the circuit switching fabric with the STDM (Static Time Division Multiplexing) is implemented on the FPGA for predictable communication and cost-efficient data broadcasting. Parallel convolution modules for AlexNet are implemented on FiC-SW1 pr
60#
發(fā)表于 2025-3-31 23:50:02 | 只看該作者
SqueezeJet: High-Level Synthesis Accelerator Design for Deep Convolutional Neural Networkssuch as object recognition and object detection. Most of these solutions come at a huge computational cost, requiring billions of multiply-accumulate operations and, thus, making their use quite challenging in real-time applications that run on embedded mobile (resource-power constrained) hardware.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 19:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石景山区| 乌恰县| 孝义市| 云浮市| 灵武市| 宁乡县| 新绛县| 阳东县| 夏邑县| 山丹县| 鄯善县| 建宁县| 新疆| 威海市| 葫芦岛市| 哈尔滨市| 威宁| 响水县| 临高县| 高陵县| 修水县| 普格县| 佛教| 佛冈县| 思南县| 久治县| 木里| 安塞县| 文化| 昌平区| 阿拉尔市| 广平县| 文安县| 全椒县| 耒阳市| 连州市| 宁明县| 黄龙县| 镇坪县| 兴安盟| 桦川县|