找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Multiple Imputation; Advantages, Pitfalls Kristian Kleinke,Jost Reinecke,Martin Spiess Textbook 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 22829|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:36:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applied Multiple Imputation
期刊簡稱Advantages, Pitfalls
影響因子2023Kristian Kleinke,Jost Reinecke,Martin Spiess
視頻videohttp://file.papertrans.cn/160/159973/159973.mp4
發(fā)行地址Provides an introduction to missing data and multiple imputation for students and applied researchers.Features numerous step-by-step tutorials in R with supplementary R code and data sets.Discusses th
學(xué)科分類Statistics for Social and Behavioral Sciences
圖書封面Titlebook: Applied Multiple Imputation; Advantages, Pitfalls Kristian Kleinke,Jost Reinecke,Martin Spiess Textbook 2020 Springer Nature Switzerland AG
影響因子This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master’s and PhD students with a sound basic knowledge of statistics.?.
Pindex Textbook 2020
The information of publication is updating

書目名稱Applied Multiple Imputation影響因子(影響力)




書目名稱Applied Multiple Imputation影響因子(影響力)學(xué)科排名




書目名稱Applied Multiple Imputation網(wǎng)絡(luò)公開度




書目名稱Applied Multiple Imputation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Multiple Imputation被引頻次




書目名稱Applied Multiple Imputation被引頻次學(xué)科排名




書目名稱Applied Multiple Imputation年度引用




書目名稱Applied Multiple Imputation年度引用學(xué)科排名




書目名稱Applied Multiple Imputation讀者反饋




書目名稱Applied Multiple Imputation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:03 | 只看該作者
2199-7357 ls in R with supplementary R code and data sets.Discusses thThis book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros
板凳
發(fā)表于 2025-3-22 03:06:25 | 只看該作者
Untersuchungsdesign und Methodik,d with simple examples. In addition, conditions are given for analysing data sets without the need to explicitly model the missing data mechanism (“ignorability”). We also review diagnostic tools for incomplete data sets, both descriptive and based on a statistical test.
地板
發(fā)表于 2025-3-22 07:46:07 | 只看該作者
Untersuchungsdesign und Methodik,ve practical advice which procedure might be suited best in a given scenario because valid inferences in applied research can only be expected based on informed decisions. A conclusion of this chapter will be that there is not the one method or technique that works best under every possible scenario.
5#
發(fā)表于 2025-3-22 12:00:15 | 只看該作者
Untersuchungsdesign und Methodik,modeling approach, where only univariate marginal models are used to generate imputations. Additional topics are rounding, how to deal with restrictions and how to treat interaction or higher polynomial terms.
6#
發(fā)表于 2025-3-22 13:33:53 | 只看該作者
Missing Data Mechanism and Ignorability,d with simple examples. In addition, conditions are given for analysing data sets without the need to explicitly model the missing data mechanism (“ignorability”). We also review diagnostic tools for incomplete data sets, both descriptive and based on a statistical test.
7#
發(fā)表于 2025-3-22 19:10:30 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:13 | 只看該作者
Multiple Imputation: Theory,modeling approach, where only univariate marginal models are used to generate imputations. Additional topics are rounding, how to deal with restrictions and how to treat interaction or higher polynomial terms.
9#
發(fā)表于 2025-3-23 02:01:14 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 03:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇信县| 金沙县| 太白县| 阿图什市| 灌云县| 河东区| 西盟| 腾冲县| 镇宁| 本溪| 新民市| 高碑店市| 长子县| 牡丹江市| 建瓯市| 县级市| 儋州市| 虎林市| 屏东市| 漳平市| 阿荣旗| 大厂| 德化县| 家居| 恩平市| 华亭县| 清原| 同仁县| 青阳县| 那曲县| 稷山县| 岳阳市| 施秉县| 宜兰县| 桓台县| 开封市| 隆子县| 楚雄市| 克拉玛依市| 尤溪县| 广东省|