找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Laplace Transforms and z-Transforms for Scientists and Engineers; A Computational Appr Urs Graf Textbook 2004 Springer Basel AG 200

[復(fù)制鏈接]
樓主: MIFF
11#
發(fā)表于 2025-3-23 09:41:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:34:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:16 | 只看該作者
Heat Conduction and Vibration Problems,The main reference about heat conduction in connection with Laplace transformation is [Jaeger and Carslaw (2000)]. Further references are [Churchill (1972)], [Proudnikov and Ditkine (1979)], [Chabat and Lavrentiev (1972)]. We start with some problems concerning linear flow of heat. Later we will treat problems with cylindrical symmetry.
14#
發(fā)表于 2025-3-24 01:09:31 | 只看該作者
15#
發(fā)表于 2025-3-24 05:38:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:15:31 | 只看該作者
Fractals and Patterns in Electrodepostionenerating function method” among the mathematicians. Indeed, the z-transform of a sequence is the generating function of this sequence, where the independent variable . is replaced by its reciprocal 1/.. The z-transformation or z-transform today is applied to model sample-data control systems or oth
17#
發(fā)表于 2025-3-24 13:03:30 | 只看該作者
https://doi.org/10.1007/978-1-4612-4130-0y of z-transformation may start with this chapter. It is assumed that the reader has a sufficient level of expertise with .. At any case we recommend to first read Section 3.1 of the foregoing chapter.
18#
發(fā)表于 2025-3-24 16:23:19 | 只看該作者
19#
發(fā)表于 2025-3-24 22:06:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耒阳市| 孙吴县| 安陆市| 云林县| 东源县| 凉城县| 彭山县| 谷城县| 依兰县| 太原市| 平遥县| 孟连| 丰县| 繁昌县| 阳江市| 策勒县| 新泰市| 宜宾县| 油尖旺区| 自治县| 绥棱县| 济源市| 玉门市| 武夷山市| 农安县| 天柱县| 徐水县| 西贡区| 绥化市| 友谊县| 当阳市| 深圳市| 临澧县| 金阳县| 巴中市| 宜宾市| 竹溪县| 南平市| 许昌县| 湖口县| 汕尾市|