找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復(fù)制鏈接]
樓主: autoantibodies
61#
發(fā)表于 2025-4-1 05:15:19 | 只看該作者
Entertainment Computing – ICEC 2022rentiation and definite integration. Then, not only almost all familiar functions, but also objects such as the δ-function, can be reinterpreted as hyperfunctions and dealt with in a unified way. In this chapter we discuss, in detail, several examples of basic hyperfunctions. We begin with character
62#
發(fā)表于 2025-4-1 07:45:00 | 只看該作者
https://doi.org/10.1007/978-3-031-20212-4ositive integers). The concept of a formal product, i.e. hyperfunctions of the form . with a hyperfunction . and a single-valued analytic function ., played a basic role. Moreover, hyperfunctions ∣.∣., ∣.∣.H(.), ∣.∣. sgn . etc. were defined for α complex. What are the relations between them and .. ,
63#
發(fā)表于 2025-4-1 10:29:11 | 只看該作者
Entertainment Computing – ICEC 2022 Thus, we now have a basis on which we can perform differentiation and integration of hyperfunctions without obstacles. In the present chapter, we start the theory of Fourier transformations of hyperfunctions. In physical sciences and engineering, some problems are conveniently dealt with by Fourier
64#
發(fā)表于 2025-4-1 15:25:20 | 只看該作者
65#
發(fā)表于 2025-4-1 20:18:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 通江县| 班戈县| 建水县| 延安市| 义乌市| 西丰县| 都匀市| 乐至县| 九龙坡区| 荣昌县| 林甸县| 微山县| 资兴市| 庆云县| 许昌县| 通辽市| 吉木萨尔县| 定州市| 白城市| 新晃| 眉山市| 衢州市| 延吉市| 玉树县| 天等县| 左云县| 工布江达县| 自贡市| 宁城县| 天柱县| 南京市| 东乡族自治县| 萨迦县| 长沙市| 融水| 平和县| 北宁市| 潞西市| 潢川县| 阿拉尔市|