找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Graph Theory in Computer Vision and Pattern Recognition; Abraham Kandel,Horst Bunke,Mark Last Book 2007 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
查看: 35963|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:16:30 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Applied Graph Theory in Computer Vision and Pattern Recognition
影響因子2023Abraham Kandel,Horst Bunke,Mark Last
視頻videohttp://file.papertrans.cn/160/159847/159847.mp4
發(fā)行地址Will serve as a foundation for a variety of useful applications of the graph theory to computer vision, pattern recognition, and related areas.Covers a representative set of novel graph-theoretic meth
學(xué)科分類Studies in Computational Intelligence
圖書封面Titlebook: Applied Graph Theory in Computer Vision and Pattern Recognition;  Abraham Kandel,Horst Bunke,Mark Last Book 2007 Springer-Verlag Berlin Hei
影響因子Graph theory has strong historical roots in mathematics, especially in topology. Its birth is usually associated with the “four-color problem” posed by Francis Guthrie 1 in 1852, but its real origin probably goes back to the Seven Bridges of Konigsber ¨ g 2 problem proved by Leonhard Euler in 1736. A computational solution to these two completely different problems could be found after each problem was abstracted to the level of a graph model while ignoring such irrelevant details as country shapes or cross-river distances. In general, a graph is a nonempty set of points (vertices) and the most basic information preserved by any graph structure refers to adjacency relationships (edges) between some pairs of points. In the simplest graphs, edges do not have to hold any attributes, except their endpoints, but in more sophisticated graph structures, edges can be associated with a direction or assigned a label. Graph vertices can be labeled as well. A graph can be represented graphically as a drawing (vertex=dot,edge=arc),but,aslongaseverypairofadjacentpointsstaysconnected by the same edge, the graph vertices can be moved around on a drawing without changing the underlying graph struct
Pindex Book 2007
The information of publication is updating

書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition影響因子(影響力)




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition被引頻次




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition被引頻次學(xué)科排名




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition年度引用




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition年度引用學(xué)科排名




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition讀者反饋




書目名稱Applied Graph Theory in Computer Vision and Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:13 | 只看該作者
A Graphical Model Framework for Image Segmentation
地板
發(fā)表于 2025-3-22 05:08:10 | 只看該作者
How and Why Pattern Recognition and Computer Vision Applications Use Graphs
5#
發(fā)表于 2025-3-22 10:42:40 | 只看該作者
6#
發(fā)表于 2025-3-22 15:09:11 | 只看該作者
A Generic Graph Distance Measure Based on Multivalent Matchings
7#
發(fā)表于 2025-3-22 20:18:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:55 | 只看該作者
Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal Event D
9#
發(fā)表于 2025-3-23 02:32:50 | 只看該作者
Clustering of Web Documents Using Graph Representations
10#
發(fā)表于 2025-3-23 08:27:33 | 只看該作者
Applied Graph Theory in Computer Vision and Pattern Recognition
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 02:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长兴县| 阿图什市| 舒城县| 永和县| 建水县| 凤阳县| 巴南区| 郑州市| 湖北省| 体育| 福海县| 云霄县| 万载县| 惠安县| 沈阳市| 吉林省| 台北市| 和田县| 武胜县| 丹东市| 永德县| 连云港市| 饶平县| 德惠市| 龙口市| 荔波县| 永吉县| 奉节县| 讷河市| 雅江县| 定州市| 丰都县| 略阳县| 巴彦淖尔市| 凤翔县| 莲花县| 岗巴县| 大名县| 吉安市| 雷山县| 皋兰县|