找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Geography and Geoinformatics for Sustainable Development; Proceedings of ICGGS Wuttichai Boonpook,Zhaohui Lin,Parichat Wetchayont C

[復制鏈接]
樓主: opioid
41#
發(fā)表于 2025-3-28 17:45:52 | 只看該作者
Measurement of PM10, PM2.5, NO2, and SO2 Using Sensors,amely, MS-1, MS-2, and MS-3. Current study results are compared with the previous studies. The results obtained in the current study have been compared with the previous studies. The percentage difference for PM. is found to be (?) 107.28% between MS-1 and reference study. The difference for MS-2 an
42#
發(fā)表于 2025-3-28 22:24:01 | 只看該作者
43#
發(fā)表于 2025-3-29 01:07:36 | 只看該作者
Noise Mapping of Different Zones in an Urban Area During Deepawali Festival,0.60?dBA, and 67.10?dBA, respectively. Based on the observations, noise maps for all 3?days have been prepared using inverse distance weighted (IDW) interpolation method in ArcGIS. Results of L., L., and L. are plotted using GIS tools. Comparison with the standard limits has also been carried out. I
44#
發(fā)表于 2025-3-29 05:31:05 | 只看該作者
Digital Twins in Farming with the Implementation of Agricultural Technologies,ant solutions for efficient food production. We also perform a case study on a digital twin paradigm in a solar energy-supplied farm and its contribution to two of the Sustainable Development Goals (SDGs): “Zero hunger” and “Affordable and clean energy.” Furthermore, we outline the purpose of broad
45#
發(fā)表于 2025-3-29 09:41:42 | 只看該作者
46#
發(fā)表于 2025-3-29 12:47:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:30:32 | 只看該作者
Machine Learning Approach with Environmental Pollution and Geospatial Information for Mapping Poverlearning models: XGboost, lasso, random forest, and ridge regression for poverty estimation. The result of the study reveals that poverty-related areas are highly correlated with environmental pollution. The random forest technique has the best performance prediction among the four methods, with an
48#
發(fā)表于 2025-3-29 19:58:39 | 只看該作者
Sugarcane and Cassava Classification Using Machine Learning Approach Based on Multi-temporal Remoteurvey was used to assess the classification performance and resulted in 68% accuracy for sugarcane and cassava classification. Multi-temporal remote sensing can aid in the mapping of sugarcane and cassava. The developed approach can be used for crop mapping, management, and estimation of crop produc
49#
發(fā)表于 2025-3-30 00:46:54 | 只看該作者
50#
發(fā)表于 2025-3-30 06:21:20 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 14:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西峡县| 鸡东县| 扶风县| 全州县| 康乐县| 夏津县| 托克托县| 阳春市| 新巴尔虎左旗| 繁峙县| 长阳| 文登市| 马关县| 灵宝市| 通河县| 石河子市| 襄汾县| 香格里拉县| 陇南市| 黄冈市| 任丘市| 梁平县| 涞水县| 自治县| 饶河县| 双流县| 青冈县| 罗定市| 家居| 闽侯县| 宜川县| 延寿县| 桦南县| 石阡县| 大余县| 迭部县| 礼泉县| 元阳县| 宝坻区| 三门县| 荔浦县|