找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Computing for Software and Smart Systems; Proceedings of ACSS Rituparna Chaki,Agostino Cortesi,Nabendu Chaki Conference proceeding

[復制鏈接]
樓主: Reagan
21#
發(fā)表于 2025-3-25 04:40:24 | 只看該作者
Image Binarization with Hybrid Adaptive Thresholdsues, local technique gives a result similar to other local techniques, while the hybrid technique gives a result which is not similar to the previous two but is a very effective one. So it is convenient to apply in degraded document image binarization. This technique is compared with other global as
22#
發(fā)表于 2025-3-25 11:18:08 | 只看該作者
BEN-CNN-BiLSTM: A Model of Consequential Document Set Identification of Bengali Textusing the test dataset to calculate recall, precision, F-score, and accuracy. Compared to other standard classification algorithms in Bengali text classification, our proposed BEN-CNN-BiLSTM model achieved 93.94% accuracy. Thus, it can be said that the proposed BEN-CNN-BiLSTM model can be a new docu
23#
發(fā)表于 2025-3-25 11:45:56 | 只看該作者
A Machine Learning Model for Automatic Sleep Staging Based on Single-Channel EEG Signalsd method were superior to those of state-of-the-art methods centered on the different machine learning classifiers. In this paper, automatic sleep data staging was realized, effectively improving the accuracy.
24#
發(fā)表于 2025-3-25 16:05:20 | 只看該作者
Deep Learning-Based Prediction of Time-Series Single-Cell RNA-Seq Dataoint is also necessary when data is degradable or missing. Hence, in this work, we have attempted to develop a deep neural network (DNN)-based prediction model for estimating gene expression values in time-series scRNA-seq data. The DNN regressor is capable of estimating data at advanced time-points
25#
發(fā)表于 2025-3-25 22:21:29 | 只看該作者
Stress Analysis Using Machine Learningctive area of research and achieved high performance of models, those were based on signal and speech which were computationally costlier and text-based research work using a state-of-the-art model called the BERT has achieved an f1-score i.e. 80.65%. This project focuses on text-domain and uses ope
26#
發(fā)表于 2025-3-26 01:42:54 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:00 | 只看該作者
Classification of Kathakali Asamyuktha Hasta Mudras Using Naive Bayes Classifier and Convolutional N
28#
發(fā)表于 2025-3-26 09:16:52 | 只看該作者
29#
發(fā)表于 2025-3-26 12:47:37 | 只看該作者
30#
發(fā)表于 2025-3-26 18:09:57 | 只看該作者
978-981-19-6790-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
和顺县| 高台县| 汉中市| 乃东县| 额敏县| 无为县| 桦南县| 旅游| 塔河县| 虎林市| 稷山县| 兴安盟| 金堂县| 黎城县| 都兰县| 林西县| 聊城市| 句容市| 抚州市| 紫金县| 曲松县| 遂宁市| 顺平县| 龙游县| 肥城市| 内黄县| 德令哈市| 镇平县| 石首市| 乌鲁木齐县| 淮滨县| 康保县| 庆安县| 鄄城县| 治多县| 扬中市| 清原| 鄂托克旗| 阳谷县| 宾川县| 晋宁县|