找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Computational Electromagnetics; State of the Art and Nikolaos K. Uzunoglu,Konstantina S. Nikita,Dimitra Book 2000 Springer-Verlag B

[復(fù)制鏈接]
樓主: 磨損
21#
發(fā)表于 2025-3-25 04:08:04 | 只看該作者
Engineering Applications of Neural Networksts the application of the method to structures not exceeding few wavelengths cubed. A possibility to extend the MoM to larger structures are large-domain procedures. This chapter is aimed at describing such a procedure, to illustrate it on a number of examples, and to demonstrate its relative advant
22#
發(fā)表于 2025-3-25 07:42:22 | 只看該作者
23#
發(fā)表于 2025-3-25 13:37:02 | 只看該作者
https://doi.org/10.1007/978-3-319-23983-5 field in an orthogonal vector space. The excitation or the position of the antenna elements are found in a relatively simple and easy to use form. Several examples show the applicability of the method.
24#
發(fā)表于 2025-3-25 17:43:54 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:53 | 只看該作者
Engineering Applications of Neural Networks at the Radiation Laboratory of the Massachusetts Institute of Technology, Cambridge, Massachusetts (USA) [1], in connection with the development of the Microwave Radar [2]. The main reason for this progress was the introduction of . to represent complex waveguide discontinuities in terms of simple
26#
發(fā)表于 2025-3-26 03:58:10 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:54:17 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:38 | 只看該作者
https://doi.org/10.1007/978-3-319-65172-9ematical truncation of the finite element mesh. More specifically, the boundary integral which appears in the weak wave equation can no longer be eliminated by enforcing Neumann or Dirichlet boundary conditions at the boundaries of the domain.
30#
發(fā)表于 2025-3-26 17:10:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 万荣县| 剑川县| 巴里| 河北区| 化州市| 祥云县| 龙南县| 开化县| 泗洪县| 凤山市| 普安县| 临江市| 绥德县| 五河县| 青冈县| 加查县| 赤水市| 克东县| 玉树县| 滨海县| 尼木县| 桦甸市| 合川市| 故城县| 阿拉尔市| 固镇县| 图木舒克市| 积石山| 茌平县| 深泽县| 临湘市| 页游| 洛宁县| 麟游县| 密云县| 茌平县| 庆元县| 德江县| 茂名市| 五华县|