找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Analysis, Optimization and Soft Computing; ICNAAO-2021, Varanas Tanmoy Som,Debdas Ghosh,Dayaram Sahu Conference proceedings 2023 Th

[復(fù)制鏈接]
樓主: 決絕
41#
發(fā)表于 2025-3-28 14:34:26 | 只看該作者
Energy and Environmental Scenario of Indiacted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
42#
發(fā)表于 2025-3-28 22:22:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:51:13 | 只看該作者
Fractional Operator Associated with the Fractal Integral of A-Fractal Functioncted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
44#
發(fā)表于 2025-3-29 03:16:39 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:52 | 只看該作者
Conference proceedings 2023at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, sig
46#
發(fā)表于 2025-3-29 15:17:18 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:24 | 只看該作者
48#
發(fā)表于 2025-3-29 22:37:26 | 只看該作者
49#
發(fā)表于 2025-3-30 00:19:01 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:34 | 只看該作者
A Note on?Complex-Valued Fractal Functions on?the?Sierpiński Gasketvalued fractal operator defined on the Sierpiński gasket (. in short). We also calculate the bound for the perturbation error on .. Furthermore, we prove that the complex-valued fractal operator is bounded. In the last part, we establish the connection between the norm of the real-valued fractal operator and the complex-valued fractal operator.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭西县| 久治县| 昔阳县| 大关县| 岢岚县| 班戈县| 阳曲县| 仁怀市| 英超| 梓潼县| 宿松县| 来宾市| 清河县| 海晏县| 仙游县| 德令哈市| 西丰县| 石台县| 贡山| 颍上县| 略阳县| 芮城县| 独山县| 中卫市| 旌德县| 高青县| 和平区| 韶山市| 洛川县| 东乡族自治县| 盐源县| 台湾省| 安吉县| 万州区| 左贡县| 伽师县| 托克托县| 岳阳市| 百色市| 天峨县| 什邡市|