找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Analysis, Computation and Mathematical Modelling in Engineering; Select Proceedings o Santanu Saha Ray,H. Jafari,Suchandan Kayal Co

[復(fù)制鏈接]
樓主: 不要提吃飯
21#
發(fā)表于 2025-3-25 04:46:09 | 只看該作者
22#
發(fā)表于 2025-3-25 07:30:45 | 只看該作者
23#
發(fā)表于 2025-3-25 14:02:09 | 只看該作者
24#
發(fā)表于 2025-3-25 17:51:13 | 只看該作者
25#
發(fā)表于 2025-3-25 20:57:19 | 只看該作者
Energy and Environment Regulation differential equations. Prior to being these non-similarity equations are linearized by quasilinearization method and solved by the Chebyshev spectral collocation method. Several features emerging from these parameters, namely micropolar, viscous dissipation, Biot, and Soret numbers on physical quantities of the flow, are explored in detail.
26#
發(fā)表于 2025-3-26 03:57:38 | 只看該作者
Regulatory policies and energy prices exact solutions can be established. Moreover, solutions derived here contain some arbitrary constants and functions. These solutions are mainly multisoliton, single soliton, periodic or quasi-periodic and evolutionary wave types. Finally, with the adjustments in these arbitrary parameters and functions, some graphs have been plotted.
27#
發(fā)表于 2025-3-26 04:30:27 | 只看該作者
https://doi.org/10.1007/978-1-349-25057-8aluated through their sizes and powers using the Monte Carlo simulation procedure. It has been observed that the proposed tests compete with each other. Finally, two datasets have been considered for illustrating the testing procedures.
28#
發(fā)表于 2025-3-26 09:01:57 | 只看該作者
29#
發(fā)表于 2025-3-26 14:36:08 | 只看該作者
,Soliton Solutions of?Dual-mode Kawahara Equation via?Lie Symmetry Analysis,ions of the Kawahara equation. Initially, we reduce the governing equation into an ordinary differential equation by applying the Lie symmetry analysis. Further, we derive the soliton and periodic solutions via three integration methods, namely sech-csch scheme, exp-expansion method, and modified F-expansion method.
30#
發(fā)表于 2025-3-26 17:02:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 02:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳阳市| 鹿泉市| 图木舒克市| 杭锦旗| 兴宁市| 尤溪县| 社会| 海晏县| 普定县| 锦州市| 当雄县| 武冈市| 承德市| 津市市| 洪江市| 双峰县| 监利县| 瓮安县| 郓城县| 灯塔市| 常熟市| 柘城县| 会宁县| 江陵县| 冀州市| 瑞金市| 重庆市| 柳州市| 左云县| 庆云县| 沁阳市| 宁乡县| 通河县| 英德市| 宁南县| 周宁县| 公主岭市| 贺州市| 旬阳县| 交口县| 林西县|