找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes; 11th International S Gérard Cohen,Marc Giusti,Teo Mora Conference proceed

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:41:07 | 只看該作者
Chemical isomerism, a challenge for algebraic combinatorics and for computer science,ular structure elucidation, where a molecule has to be identified from experimental, usually from spectroscopic data. MOLGEN provides the full wealth of mathematically possible structures (multigraphs with given degree sequence, where the vertices are colored by atom names), from which further chemi
42#
發(fā)表于 2025-3-28 20:40:34 | 只看該作者
43#
發(fā)表于 2025-3-28 23:19:57 | 只看該作者
44#
發(fā)表于 2025-3-29 05:59:28 | 只看該作者
How lower and upper complexity bounds meet in elimination theory,
45#
發(fā)表于 2025-3-29 09:48:40 | 只看該作者
46#
發(fā)表于 2025-3-29 14:22:46 | 只看該作者
47#
發(fā)表于 2025-3-29 16:37:47 | 只看該作者
48#
發(fā)表于 2025-3-29 20:44:24 | 只看該作者
Algorithmic/Architectural Level Refinement,s equivalent to a certain double coset problem, no polynomial algorithm can be expected to work in the general case. But the reduction techniques used still allow to solve problems of an interesting size. As an example we explain how the 7-designs in the title were found. The two simple 7-designs wi
49#
發(fā)表于 2025-3-30 01:51:31 | 只看該作者
Analog Circuits and Signal Processingd by the algebraic-combinatoric “Bézout number” of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric degree is much smaller than the Bézout number since it does not take into account multiplicities or degre
50#
發(fā)表于 2025-3-30 07:46:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沛县| 赫章县| 罗定市| 宁晋县| 陈巴尔虎旗| 慈利县| 琼结县| 夏河县| 枣阳市| 兴山县| 奉新县| 泰安市| 古田县| 松潘县| 嘉兴市| 海晏县| 安龙县| 克什克腾旗| 临安市| 新宾| 环江| 舞阳县| 大厂| 罗田县| 平山县| 甘德县| 鱼台县| 收藏| 南川市| 牙克石市| 甘泉县| 岳西县| 通化县| 若尔盖县| 龙井市| 色达县| 陵水| 富阳市| 武陟县| 盈江县| 阳高县|