找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of the Theory of Groups in Mechanics and Physics; Petre P. Teodorescu,Nicolae-Alexandru P. Nicorovic Book 2004 Springer Scien

[復(fù)制鏈接]
樓主: BOUT
21#
發(fā)表于 2025-3-25 06:37:50 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:02 | 只看該作者
23#
發(fā)表于 2025-3-25 12:06:58 | 只看該作者
24#
發(fā)表于 2025-3-25 18:02:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:13 | 只看該作者
Applications in Mechanics,mulations. Then, we analyse in detail the symmetry properties of the basic equations in both formulations, and show a demonstration of Noether’s theorem and its reciprocal. Following these preliminaries, the main part of the chapter is dedicated to the study of the one-to-one correspondence between
26#
發(fā)表于 2025-3-26 00:42:01 | 只看該作者
Applications in Quantum Mechanics and Physics of Elementary Particles,e to model the energy levels of the electron in a hydrogen atom. Later on, in its general form, Schr?dinger’s equation reached the same central importance to quantum mechanics as Newton’s laws of motion to classical mechanics.
27#
發(fā)表于 2025-3-26 08:04:02 | 只看該作者
Book 2004y, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a p
28#
發(fā)表于 2025-3-26 10:06:10 | 只看該作者
29#
發(fā)表于 2025-3-26 16:38:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:36:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 08:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瓦房店市| 绥滨县| 辽源市| 石景山区| 新河县| 潮安县| 西乌珠穆沁旗| 鄂州市| 安溪县| 巴东县| 阿鲁科尔沁旗| 新化县| 克什克腾旗| 兴化市| 平顺县| 正镶白旗| 江津市| 通州市| 德江县| 安义县| 丽江市| 邢台县| 温州市| 广元市| 通榆县| 邹平县| 太保市| 桂东县| 桂林市| 罗城| 东山县| 夏津县| 富锦市| 宁陵县| 郁南县| 林周县| 尖扎县| 岢岚县| 榆树市| 吉木乃县| 通江县|