找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Medical Artificial Intelligence; First International Shandong Wu,Behrouz Shabestari,Lei Xing Conference proceedings 2022 T

[復(fù)制鏈接]
樓主: 難免
21#
發(fā)表于 2025-3-25 05:19:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:01:17 | 只看該作者
M.-H. Goni,V. Markussis,G. Tolisikely fractured regions. Based on this fracture probability map we detect the presence of fracture and are able to differentiate a fractured tooth from a control tooth. We compare these results to a 2D CNN-based approach and we show that our approach provides superior detection results. We also show
23#
發(fā)表于 2025-3-25 12:14:38 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:32 | 只看該作者
,Deep Learning Meets Computational Fluid Dynamics to?Assess CAD in?CCTA,ed invasive examinations to assess this condition, the current research focus is put on non-invasive procedures. Here, the coronary computed tomography angiography is the first-choice modality, but its manual analysis is cost-inefficient, lacks reproducibility, and suffers from significant inter- an
25#
發(fā)表于 2025-3-25 21:55:47 | 只看該作者
26#
發(fā)表于 2025-3-26 04:13:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:28:21 | 只看該作者
Automated Assessment of Renal Calculi in Serial Computed Tomography Scans,his retrospective study included 722 scans from 330 patients chosen from 8544 asymptomatic patients who underwent two or more CTC (CT colonography) or non-enhanced abdominal CT scans between 2004 and 2016 at a single medical center. A pre-trained deep learning (DL) model was used to segment the kidn
28#
發(fā)表于 2025-3-26 09:24:12 | 只看該作者
,Prediction of?Mandibular ORN Incidence from?3D Radiation Dose Distribution Maps Using Deep Learningr (HNC) patients treated with radiotherapy (RT). The prediction of mandibular ORN may not only guide the RT treatment planning optimisation process but also identify which patients would benefit from a closer follow-up post-RT for an early diagnosis and intervention of ORN. Existing mandibular ORN p
29#
發(fā)表于 2025-3-26 12:37:23 | 只看該作者
,Analysis of?Potential Biases on?Mammography Datasets for?Deep Learning Model Development,ge. This paper provides an overview of the potential biases that appear in image analysis datasets that affect the development and performance of artificial intelligence algorithms. Especially, an exhaustive analysis of mammography data has been carried out at the patient, image and source of origin
30#
發(fā)表于 2025-3-26 17:04:03 | 只看該作者
,ECG-ATK-GAN: Robustness Against Adversarial Attacks on?ECGs Using Conditional Generative Adversariaearning approaches have reached human-level performance in classifying arrhythmia from ECGs. However, these architectures are vulnerable to adversarial attacks, which can misclassify ECG signals by decreasing the model’s accuracy. Adversarial attacks are small crafted perturbations injected in the o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤阴县| 夏河县| 屏东市| 汤原县| 涞水县| 南开区| 永泰县| 南漳县| 林周县| 措勤县| 彭州市| 沂南县| 漳浦县| 达拉特旗| 长沙县| 栖霞市| 辰溪县| 光山县| 贵州省| 德庆县| 天长市| 汪清县| 龙口市| 南木林县| 桐柏县| 霍城县| 贵州省| 灵宝市| 永靖县| 宜城市| 于田县| 仁化县| 阜平县| 仙桃市| 沁水县| 涪陵区| 沙田区| 通州市| 聂荣县| 德令哈市| 韶关市|