找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Volume 2 A. N. Philippou,A. F. Horadam,G. E. Bergum Book 1988 Springer Science+Business Media B.V. 1988

[復(fù)制鏈接]
樓主: Extraneous
51#
發(fā)表于 2025-3-30 12:04:26 | 只看該作者
52#
發(fā)表于 2025-3-30 12:30:02 | 只看該作者
Adaptive Educational Hypermedia Systemsal elements in these sequences. Restrictions on n such that F. = 0 (mod d) can always be determined. However, for n ε{5, 8, 10, 12, 13, 15, 16, 17, 20} there does not exist an n-value such that L. = 0 (mod d).
53#
發(fā)表于 2025-3-30 18:14:09 | 只看該作者
Book 1988 Australia xiii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERN A TIONAL COMMITTEE Bergum, G., Chairman Philippou, A. (Greece), Chairman Edgar, H., Co-chalrman Horadam, A. (Australia), Co-chalrman Bergum, G. (U.s.A.) Thoro, D. Kiss, P. (Hungary) Johnson, M. Long, C. (U.S.A.) Lange, L.
54#
發(fā)表于 2025-3-30 21:36:12 | 只看該作者
Fermat-Like Binomial Equations,resent this conjecture, which is also called ”Fermat’s Last Theorem”, is known to be true for all n ≤ 125 000 [1]. Moreover, the recent work of G. Faltings (see [1]) implies that, for each n ≥ 3, (1) has at most a finite number of solutions (x, y, z), with (x, y, z) = 1 and xyz ≠ 0.
55#
發(fā)表于 2025-3-31 00:55:13 | 只看該作者
Symmetric Recursive Sequences Mod M,e, one of the main targets for this study. Indeed, {log F.} is uniformly distributed mod 1, so that {F.} obeys Benford’s law, detailed study of which is carried out in [6]. In this note we are going to treat uniform distribution properties of certain recursive integer sequences in residue classes.
56#
發(fā)表于 2025-3-31 07:39:46 | 只看該作者
57#
發(fā)表于 2025-3-31 12:02:03 | 只看該作者
A Congruence Relation for a Linear Recursive Sequence of Arbitrary Order,ecomes the null sequence. In this case Theorems 1 and 2 below are trivial.) In (1) m ≥ 0 is a fixed integer. We referee to (1) as an (m+1)th order recurrence relation or an (m+1)th order difference equation. Thus {T.} is an integer sequence. The purpose of our present paper is to generalize results
58#
發(fā)表于 2025-3-31 16:01:18 | 只看該作者
Fibonacci Numbers and Groups,of it which are relevant to the present paper. In the remaining sections we discuss links, occurring in our work over a number of years, between this topic and the Fibonacci and Lucas sequences of numbers (f.) and (g.)
59#
發(fā)表于 2025-3-31 17:33:32 | 只看該作者
60#
發(fā)表于 2025-4-1 00:41:53 | 只看該作者
On the Representation of Integral Sequences {Fn/d} and {Ln/d} as Sums of Fibonacci Numbers and as S/1/, the purpose of this study is the development of relationships which enable prediction of the NUMBER of addends in these representations. Integral sequences {F./d} and {L./d} are considered such that d, with 2 is a predetermined integer and n is subject to appropriate conditions to assure integr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸市| 来安县| 博乐市| 绥棱县| 横峰县| 共和县| 黔南| 呼图壁县| 福清市| 招远市| 灌南县| 丽江市| 灵丘县| 梁河县| 长宁区| 隆化县| 防城港市| 治多县| 漳州市| 绥滨县| 堆龙德庆县| 通化县| 凯里市| 封丘县| 东乌珠穆沁旗| 容城县| 三台县| 大宁县| 雷波县| 常熟市| 台山市| 柘城县| 福贡县| 荔波县| 信丰县| 罗山县| 荆门市| 酉阳| 宁晋县| 山东省| 东丽区|