找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Algebraic Geometry to Coding Theory, Physics and Computation; Ciro Ciliberto,Friedrich Hirzebruch,Mina Teicher Book 2001 K

[復(fù)制鏈接]
樓主: 紀(jì)念性
21#
發(fā)表于 2025-3-25 03:48:01 | 只看該作者
Epilogue: The Epistemic and the Rational,. Jordan we gave a higher- dimensional generalization. Here we explain how one could use this generalization to construct efficient communication networks which allow for a number of verification protocols and for the distribution of information along several channels. The efficiency of our network
22#
發(fā)表于 2025-3-25 11:13:55 | 只看該作者
23#
發(fā)表于 2025-3-25 14:50:36 | 只看該作者
Software Engineering Knowledge Repositoriesld act by families of Fourier-Mukai transforms over the complex moduli space of the mirror .. The conjecture generalizes a proposal of Kontsevich relating monodromy transformations and self-equivalences. Supporting evidence is given in the case of elliptic curves, lattice-polarized K3 surfaces and C
24#
發(fā)表于 2025-3-25 15:54:38 | 只看該作者
Applications of Algebraic Geometry to Coding Theory, Physics and Computation978-94-010-1011-5Series ISSN 1568-2609
25#
發(fā)表于 2025-3-25 22:51:16 | 只看該作者
26#
發(fā)表于 2025-3-26 02:00:28 | 只看該作者
27#
發(fā)表于 2025-3-26 07:18:41 | 只看該作者
https://doi.org/10.1007/978-94-009-4526-5esentatives of multiples of the minimal cohomology class for curves which in turn produce subvarieties of higher dimension representing multiples of the minimal class. We then discuss the problem of producing curves representing multiples of the minimal class via deformation-theoretic methods.
28#
發(fā)表于 2025-3-26 11:34:39 | 只看該作者
29#
發(fā)表于 2025-3-26 13:43:42 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:26 | 只看該作者
Nicolò Cesa-Bianchi,Ohad ShamirIn this paper we report on a work in progress about the classification of birational equivalence classes of double planes which are surfaces of Kodaira dimension zero, namely .3, Enriques and bielliptic surfaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定远县| 隆子县| 昭平县| 始兴县| 望都县| 建湖县| 邻水| 弥勒县| 利津县| 新竹市| 原平市| 哈尔滨市| 遂昌县| 隆昌县| 密山市| 樟树市| 沁阳市| 大连市| 高雄市| 扶余县| 香港| 丰都县| 通江县| 洛南县| 虎林市| 泉州市| 宁夏| 日照市| 土默特右旗| 汝南县| 平邑县| 松潘县| 溧水县| 天峨县| 财经| 南华县| 新建县| 微山县| 西昌市| 鄢陵县| 达孜县|