找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Affine and Weyl Geometry; Eduardo García-Río,Peter Gilkey,Ramón Vázquez-Lore Book 2013 Springer Nature Switzerland AG 2013

[復制鏈接]
樓主: whiplash
11#
發(fā)表于 2025-3-23 13:18:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:45:01 | 只看該作者
13#
發(fā)表于 2025-3-23 21:39:13 | 只看該作者
Applications of Affine and Weyl Geometry978-3-031-02405-4Series ISSN 1938-1743 Series E-ISSN 1938-1751
14#
發(fā)表于 2025-3-24 01:21:37 | 只看該作者
https://doi.org/10.1007/978-3-658-13852-3Let Φ be a symmetric (0, 2)-tensor field on an affine manifold (., ? ) of dimension . and let σ be the natural projection from .*. to .. We set . = . = Id and adopt the notation of Section 1.7. The modified Riemannian extension .?, Φ,. is the metric of neutral signature (., . ) on the cotangent bundle given in a coordinate free fashion by taking:
15#
發(fā)表于 2025-3-24 05:01:11 | 只看該作者
The Geometry of Modified Riemannian Extensions,Let Φ be a symmetric (0, 2)-tensor field on an affine manifold (., ? ) of dimension . and let σ be the natural projection from .*. to .. We set . = . = Id and adopt the notation of Section 1.7. The modified Riemannian extension .?, Φ,. is the metric of neutral signature (., . ) on the cotangent bundle given in a coordinate free fashion by taking:
16#
發(fā)表于 2025-3-24 10:05:52 | 只看該作者
Synthesis Lectures on Mathematics & Statisticshttp://image.papertrans.cn/a/image/159280.jpg
17#
發(fā)表于 2025-3-24 14:03:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:50:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:19:36 | 只看該作者
Basic Notions and Concepts, is needed is presented in Section 1.1. Section 1.2 introduces the notion of a connection and the associated curvature operator on a general vector bundle. Of particular interest is the case when the bundle in question is the tangent bundle. The torsion tensor . is introduced; a connection is called
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
上犹县| 河东区| 木里| 鄄城县| 海宁市| 无极县| 孟村| 新民市| 新宁县| 新安县| 洪泽县| 临汾市| 贵阳市| 砀山县| 阿坝| 海城市| 宜丰县| 读书| 兴山县| 乡宁县| 枣庄市| 共和县| 仙游县| 东兰县| 彰武县| 株洲市| 曲沃县| 仪征市| 蓝山县| 措勤县| 江源县| 平度市| 平和县| 宁津县| 宿松县| 九江市| 吉木乃县| 吐鲁番市| 许昌县| 夏邑县| 临沧市|