找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Application and Theory of Petri Nets 1998; 19th International C J?rg Desel,Manuel Silva Conference proceedings 1998 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 游牧
41#
發(fā)表于 2025-3-28 16:36:43 | 只看該作者
42#
發(fā)表于 2025-3-28 22:19:43 | 只看該作者
Elliptic Operators over ,*-Algebrasthe paradigm of Object-Oriented Modeling. They are composed of a . and one or more . which can be seen as token objects of the system net. By this approach an interesting and challenging two-level system modeling technique is introduced. Similar to the object-oriented approach, complex systems are m
43#
發(fā)表于 2025-3-29 02:59:57 | 只看該作者
44#
發(fā)表于 2025-3-29 04:08:05 | 只看該作者
45#
發(fā)表于 2025-3-29 07:20:18 | 只看該作者
46#
發(fā)表于 2025-3-29 11:40:50 | 只看該作者
47#
發(fā)表于 2025-3-29 19:17:30 | 只看該作者
48#
發(fā)表于 2025-3-29 23:19:06 | 只看該作者
Analyticity of Rotational Water Waves,Place/Transition Net (PT-net). We give a lower bound result stating that there exist CP-nets for which computing “good” stubborn sets requires time proportional to the size of the equivalent PT-net. We suggest an approximative method for computing stubborn set of process-partitioned CP-nets which do
49#
發(fā)表于 2025-3-30 01:07:49 | 只看該作者
S.I. Betelú,M.A. Fontelos,U. Kindelánis concentrated on the verification of nexttime-less LTL (linear time temporal logic) formulas with the aid of the stubborn set method. The contribution of the paper is a theorem that gives us a way to utilize the structure of the formula when the stubborn set method is used and there is no fairness
50#
發(fā)表于 2025-3-30 04:33:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 07:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林州市| 滁州市| 元氏县| 辽宁省| 淮安市| 富川| 浦江县| 高青县| 东宁县| 庆安县| 昌平区| 囊谦县| 纳雍县| 息烽县| 文成县| 平阳县| 咸阳市| 扬中市| 黔南| 大庆市| 麻城市| 邵阳市| 乌兰察布市| 青铜峡市| 玛沁县| 商南县| 仁布县| 慈溪市| 珠海市| 边坝县| 肇东市| 富民县| 文安县| 田阳县| 兰溪市| 梁山县| 固原市| 石屏县| 晋城| 宜州市| 大理市|