找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytical Methods in Probability Theory; Proceedings of the C Daniel Dugué,Eugene Lukacs,Vijay K. Rohatgi Conference proceedings 1981 Spri

[復制鏈接]
樓主: 大口水罐
41#
發(fā)表于 2025-3-28 18:02:46 | 只看該作者
42#
發(fā)表于 2025-3-28 21:59:01 | 只看該作者
43#
發(fā)表于 2025-3-29 00:37:37 | 只看該作者
44#
發(fā)表于 2025-3-29 05:20:33 | 只看該作者
https://doi.org/10.1007/BFb0097305Branching process; Probability; Probability theory; Variance; Wahrscheinlichkeitsrechnung; local time; pro
45#
發(fā)表于 2025-3-29 10:39:12 | 只看該作者
46#
發(fā)表于 2025-3-29 14:52:45 | 只看該作者
When Morality Clashes with Lawfulness,cal probability measure, ., the proposed test is based on the supremum of the absolute differences between hypothesized and empirical probabilities, the supremum being taken over all possible events. He showed that his test statistic was distribution free in the general p-variate case and derived it
47#
發(fā)表于 2025-3-29 18:08:23 | 只看該作者
48#
發(fā)表于 2025-3-29 20:38:17 | 只看該作者
49#
發(fā)表于 2025-3-30 02:50:34 | 只看該作者
Introduction to Multifractalityriant probability measures on G. The differentiability of this Fourier transform enables us to introduce the notion of variance. Moreover, continuous convolution semigroups of probability measures admit a Lévy-Khintchine representation, and so Gaussian semi-groups can be defined via their Fourier tr
50#
發(fā)表于 2025-3-30 05:27:16 | 只看該作者
Fluctuations of Interfaces and Frontsures on .. Let I ? . be the class of all infinitely divisible probability measures. Let I. ? I be the class of all measures which have no indecomposable or idempotent factors. One of the fundamental problems in analytic probability theory is to obtain a precise description of the class I.. This prob
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
滦南县| 上饶县| 湖北省| 堆龙德庆县| 卓尼县| 额敏县| 冕宁县| 灵川县| 玉环县| 留坝县| 昌邑市| 红桥区| 德庆县| 辽宁省| 靖西县| 普格县| 宝坻区| 鸡西市| 佛山市| 青龙| 丹阳市| 合江县| 左权县| 绩溪县| 会东县| 绥德县| 蒲城县| 柏乡县| 库车县| 河北省| 沁源县| 徐汇区| 高唐县| 边坝县| 濉溪县| 当阳市| 太和县| 宣化县| 喀喇沁旗| 卢湾区| 垣曲县|