找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytical Methods for Problems of Molecular Transport; I. N. Ivchenko,S. K. Loyalka,R. V. Tompson Textbook 2007 Springer Science+Business

[復(fù)制鏈接]
樓主: 愚蠢地活
11#
發(fā)表于 2025-3-23 12:04:17 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:19 | 只看該作者
The Variational Method for the Planar Geometry,o be moment methods. It is very important to note that the simple analysis of some general properties of the Boltzmann equation related to the conservation of moments results in sufficiently accurate expressions for the velocity-slip and temperature-jump coefficients.
13#
發(fā)表于 2025-3-23 18:27:44 | 只看該作者
The Slip-Flow Regime,tricted to the usual conditions assumed for aerosol particle motion in non-uniform gases. These conditions will be discussed later in detail. The classical sphere drag and thermal force problems are solved as important practical applications of the theory and techniques described here.
14#
發(fā)表于 2025-3-23 23:36:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:48 | 只看該作者
https://doi.org/10.1007/978-3-658-25799-6Consider the unsteady, non-uniform state of an infinite gas. For this general case, the Boltzmann equation has the form [.]: ., where: ., and: .
16#
發(fā)表于 2025-3-24 10:05:07 | 只看該作者
Diskursive Konstruktionen. Eine Einleitung,Consider the steady-state flow of an infinite stream of a rarefied gas over a body having a characteristic dimension, ., in the absence of external forces. In this case, the Boltzmann equation may be expressed in the form:
17#
發(fā)表于 2025-3-24 11:35:12 | 只看該作者
https://doi.org/10.1007/978-3-531-90769-7The non-uniform state of a binary gas mixture is described by the distribution functions: . where . .=(. ./2.). . . and . is given by:
18#
發(fā)表于 2025-3-24 18:03:03 | 只看該作者
19#
發(fā)表于 2025-3-24 20:30:23 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布拖县| 鄂伦春自治旗| 高雄县| 乐东| 上高县| 张掖市| 裕民县| 赤壁市| 普陀区| 沁阳市| 亳州市| 达拉特旗| 长沙县| 永嘉县| 于田县| 莱州市| 寿宁县| 建水县| 图木舒克市| 左云县| 晋城| 青河县| 台北县| 保德县| 新乡县| 奎屯市| 静安区| 上思县| 延津县| 温州市| 山东省| 开鲁县| 崇礼县| 龙岩市| 上林县| 吴川市| 白水县| 大城县| 汾西县| 大港区| 浑源县|