找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytical Methods for Problems of Molecular Transport; I. N. Ivchenko,S. K. Loyalka,R. V. Tompson Textbook 2007 Springer Science+Business

[復(fù)制鏈接]
樓主: 愚蠢地活
11#
發(fā)表于 2025-3-23 12:04:17 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:19 | 只看該作者
The Variational Method for the Planar Geometry,o be moment methods. It is very important to note that the simple analysis of some general properties of the Boltzmann equation related to the conservation of moments results in sufficiently accurate expressions for the velocity-slip and temperature-jump coefficients.
13#
發(fā)表于 2025-3-23 18:27:44 | 只看該作者
The Slip-Flow Regime,tricted to the usual conditions assumed for aerosol particle motion in non-uniform gases. These conditions will be discussed later in detail. The classical sphere drag and thermal force problems are solved as important practical applications of the theory and techniques described here.
14#
發(fā)表于 2025-3-23 23:36:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:48 | 只看該作者
https://doi.org/10.1007/978-3-658-25799-6Consider the unsteady, non-uniform state of an infinite gas. For this general case, the Boltzmann equation has the form [.]: ., where: ., and: .
16#
發(fā)表于 2025-3-24 10:05:07 | 只看該作者
Diskursive Konstruktionen. Eine Einleitung,Consider the steady-state flow of an infinite stream of a rarefied gas over a body having a characteristic dimension, ., in the absence of external forces. In this case, the Boltzmann equation may be expressed in the form:
17#
發(fā)表于 2025-3-24 11:35:12 | 只看該作者
https://doi.org/10.1007/978-3-531-90769-7The non-uniform state of a binary gas mixture is described by the distribution functions: . where . .=(. ./2.). . . and . is given by:
18#
發(fā)表于 2025-3-24 18:03:03 | 只看該作者
19#
發(fā)表于 2025-3-24 20:30:23 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉新县| 康保县| 浪卡子县| 正阳县| 宁国市| 通山县| 靖江市| 城口县| 永兴县| 集贤县| 天镇县| 米脂县| 牟定县| 扶风县| 登封市| 泽州县| 昌吉市| 融水| 农安县| 兴安盟| 台南县| 荥经县| 凌源市| 通道| 兴业县| 宣武区| 岱山县| 新和县| 汕头市| 平山县| 封开县| 仲巴县| 阿尔山市| 盐源县| 平泉县| 福安市| 改则县| 达日县| 濮阳市| 吉水县| 凤山市|